admin 管理员组文章数量: 1087649
欧拉路和欧拉回路知识
概念
- 如果图G中的一个路径包括每个边恰好一次,则该路径称为欧拉路径(Euler path)。
- 如果一个回路是欧拉路径,则称为欧拉回路(Euler circuit)。 [1]
- 具有欧拉回路的图称为欧拉图(简称E图)。具有欧拉路径但不具有欧拉回路的图称为半欧拉图。
判断是否为欧拉(回)路
以下判断基于此图的基图连通。
1.无向图存在欧拉回路的充要条件
一个无向图存在欧拉回路,当且仅当该图所有顶点度数都为偶数,且该图是连通图。
2.有向图存欧拉回路的充要条件
一个有向图存在欧拉回路,所有顶点的入度等于出度且该图是连通图。
3.混合图存在欧拉回路条件
要判断一个混合图G(V,E)(既有有向边又有无向边)是欧拉图,方法如下:
假设有一张图有向图G’,在不论方向的情况下它与G同构。并且G’包含了G的所有有向边。那么如果存在一个图G’使得G’存在欧拉回路,那么G就存在欧拉回路。
其思路就将混合图转换成有向图判断。实现的时候,我们使用网络流的模型。现任意构造一个G’。用Ii表示第i个点的入度,Oi表示第i个点的出度。如果存在一个点k,|Ok-Ik|mod 2=1,那么G不存在欧拉回路。接下来则对于所有Ii>Oi的点从源点连到i一条容量为(Ii-Oi)/2的边,对于所有Ii<Oi的点从i连到汇点一条容量为(Oi-Ii)/2的边。如果对于节点U和V,无向边(U,V)∈E,那么U和V之间互相建立容量为1的边。如果此网络的最大流等于∑|Ii-Oi|/2,那么就存在欧拉回路。
无向图存在欧拉路的充要条件为:
① 图是连通的;
② 所有节点的度为偶数,或者有且只有两个度为奇数的节点。
本文标签: 欧拉路和欧拉回路知识
版权声明:本文标题:欧拉路和欧拉回路知识 内容由网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://www.roclinux.cn/b/1686635363a20003.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论