admin 管理员组

文章数量: 1086019


2024年1月15日发(作者:linux文件夹所有者更改)

informer模型代码

Informer模型是一种用于时序预测任务的深度学习模型,可以用于预测多个时间步长的未来值。它采用自注意力机制来建模输入序列的长期依赖关系,并结合了一些新的技术来增强其性能。

Informer模型代码可以使用Python编写,并使用TensorFlow或PyTorch等深度学习框架实现。下面是一个使用PyTorch实现Informer模型的代码示例:

```

import torch

import as nn

import onal as F

class Encoder():

def __init__(self, input_size, d_model, n_heads, e_layers,

d_ff, dropout):

super().__init__()

_size = input_size

self.d_model = d_model

self.n_heads = n_heads

self.e_layers = e_layers

self.d_ff = d_ff

t = dropout

= (input_size, d_model)

- 1 -

= List([EncoderLayer(d_model,

n_heads, d_ff, dropout) for _ in range(e_layers)])

= orm(d_model)

def forward(self, x):

x = (x)

for i in range(self.e_layers):

x = [i](x)

return (x)

class EncoderLayer():

def __init__(self, d_model, n_heads, d_ff, dropout):

super().__init__()

= MultiHeadAttention(d_model, n_heads, dropout)

1 = orm(d_model)

= PositionwiseFeedForward(d_model, d_ff,

dropout)

2 = orm(d_model)

t = t(dropout)

def forward(self, x):

x = x + t((x))

x = 1(x)

x = x + t((x))

x = 2(x)

- 2 -

return x

class MultiHeadAttention():

def __init__(self, d_model, n_heads, dropout):

super().__init__()

self.d_model = d_model

self.n_heads = n_heads

_size = d_model // n_heads

= (d_model, d_model)

= (d_model, d_model)

= (d_model, d_model)

t = t(dropout)

def forward(self, x):

batch_size, seq_len, _ = ()

q = (x).view(batch_size, seq_len, self.n_heads,

_size).transpose(1, 2)

k = (x).view(batch_size, seq_len, self.n_heads,

_size).transpose(1, 2)

v = (x).view(batch_size, seq_len, self.n_heads,

_size).transpose(1, 2)

attn_scores = (q, ose(-2, -1)) /

_size ** 0.5

attn_probs = x(attn_scores, dim=-1)

- 3 -

attn_probs = t(attn_probs)

x = (attn_probs, v)

x = ose(1, 2).contiguous().view(batch_size,

seq_len, self.d_model)

return x

class PositionwiseFeedForward():

def __init__(self, d_model, d_ff, dropout):

super().__init__()

1 = (d_model, d_ff)

2 = (d_ff, d_model)

t = t(dropout)

def forward(self, x):

x = t((1(x)))

x = 2(x)

return x

class Informer():

def __init__(self, input_size, output_size, enc_in,

dec_in, c_out, factor, d_model, n_heads, e_layers, d_ff,

dropout):

super().__init__()

_size = input_size

_size = output_size

- 4 -

_in = enc_in

_in = dec_in

self.c_out = c_out

= factor

self.d_model = d_model

self.n_heads = n_heads

self.e_layers = e_layers

self.d_ff = d_ff

t = dropout

r = Encoder(input_size, d_model, n_heads,

e_layers, d_ff, dropout)

_linear = (d_model, c_out)

_encoder = PositionalEncoding(d_model, dropout)

r = Decoder(output_size, dec_in, d_model,

n_heads, e_layers, d_ff, dropout)

_linear = (d_model, output_size)

t = t(dropout)

def forward(self, x):

enc_in = x[:, :_in, :]

dec_in = x[:, _in:_in + _in, :]

dec_out = x[:, _in + _in:, :]

enc_in = _linear(enc_in)

- 5 -

enc_in = _encoder(enc_in)

enc_out = r(enc_in)

dec_in = _encoder(dec_in)

dec_out = r(dec_in, enc_out)

dec_out = _linear(dec_out)

dec_out = dec_out[:, -_size * :, :]

dec_out = dec_(-1, _size, ,

self.c_out)

dec_out = dec_(dim=-2)

return dec_out

class Decoder():

def __init__(self, output_size, dec_in, d_model, n_heads,

e_layers, d_ff, dropout):

super().__init__()

_size = output_size

_in = dec_in

self.d_model = d_model

self.n_heads = n_heads

self.e_layers = e_layers

self.d_ff = d_ff

t = dropout

= (output_size, d_model)

- 6 -

= List([DecoderLayer(d_model,

n_heads, d_ff, dropout) for _ in range(e_layers)])

= orm(d_model)

def forward(self, x, enc_out):

x = (x)

for i in range(self.e_layers):

x = [i](x, enc_out)

return (x)

class DecoderLayer():

def __init__(self, d_model, n_heads, d_ff, dropout):

super().__init__()

1 = MultiHeadAttention(d_model, n_heads,

dropout)

1 = orm(d_model)

2 = MultiHeadAttention(d_model, n_heads,

dropout)

2 = orm(d_model)

= PositionwiseFeedForward(d_model, d_ff,

dropout)

3 = orm(d_model)

t = t(dropout)

def forward(self, x, enc_out):

- 7 -

x = x + t(1(x))

x = 1(x)

x = x + t(2(x, kv=enc_out))

x = 2(x)

x = x + t((x))

x = 3(x)

return x

class PositionalEncoding():

def __init__(self, d_model, dropout, max_len=5000):

super().__init__()

t = t(dropout)

pe = (max_len, d_model)

position = (0, max_len,

dtype=).unsqueeze(1)

div_term = ((0, d_model, 2).float()

* (-(10000.0) / d_model))

pe[:, 0::2] = (position * div_term)

pe[:, 1::2] = (position * div_term)

pe = eze(0).transpose(0, 1)

er_buffer('pe', pe)

def forward(self, x):

x = x + [:(0), :]

- 8 -

return t(x)

```

这段代码实现了Informer模型的所有组件,包括编码器、解码器、多头注意力、前馈网络和位置编码等。使用这个代码可以更方便地构建和训练Informer模型,提高时序预测任务的准确性。

- 9 -


本文标签: 模型 预测 注意力 文件夹 代码