admin 管理员组文章数量: 1086019
2024年1月17日发(作者:易语言脚本编程助手)
# -*- encoding: utf-8 -*-import jsonimport torchimport numpy as npfrom PIL import Imagefrom torchvision import transforms, modelsdata_trans = e([([224,224]), or(), ize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])])def thresh_sort(x, thresh): idx, = (x > thresh) return idx[t(x[idx])]# 加载模型部分def init_model(): resnet = 50() num_ftrs = _features = (num_ftrs, 20) _state_dict(('',
map_location='cpu')) for param in ters(): es_grad = False () return resnetdef make_prediction(path): img = (path) img_trans = data_trans(img).unsqueeze(0) output = model(img_trans) output = output[0].numpy().ravel() labels = thresh_sort(output, 0.5) if len(labels) == 0 : label_array = "No Categories" status = 0 else: label_array = [cat_to_name[str(i)] for i in labels] status = 1
return label_array, statusif __name__ == '__main__': # 初始化,预加载完成模型 model = init_model()
# 类别信息 with open('class_', 'r') as f: cat_to_name = (f) path = "path/image" label, status = make_prediction(path) print(label, status)
版权声明:本文标题:深度学习模型的服务化高并发部署--以Nginx+gunicorn+flask为例的 内容由网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://www.roclinux.cn/b/1705456009a485456.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论