admin 管理员组

文章数量: 1086019


2024年4月16日发(作者:一元云购源码)

向量数量积的坐标运算公式推导

英文回答:

The dot product of two vectors is a scalar quantity

that represents the magnitude of the projection of one

vector onto the other. The dot product is calculated by

multiplying the corresponding components of the two vectors

and then summing the products. For example, the dot product

of two vectors and is given by:

a.b = a₁b₁ + a₂b₂ + a₃b₃。

where ₁, ₂ and ₃ are the components of vector and

b₁, b₂ and b₃ are the components of vector .

The dot product can be used to calculate the angle

between two vectors. The angle between two vectors is given

by the following formula:

cos θ = a.b / (|a| |b|)。

where θ is the angle between the two vectors, |a| and

|b| are the magnitudes of the two vectors, and a.b is the

dot product of the two vectors.

The dot product can also be used to calculate the work

done by a force. The work done by a force is given by the

following formula:

W = F.d.

where W is the work done, F is the force, and d is the

displacement.

中文回答:

向量数量积是一个标量,表示一个向量在另一个向量上的投影

的大小。数量积通过将两个向量的对应分量相乘然后对乘积求和来

计算。例如,两个向量 和 的数量积为:

a.b = a₁b₁ + a₂b₂ + a₃b₃。

其中 ₁, ₂ 和 ₃ 是向量 的分量, b₁, b₂ 和 b₃ 是向

量 的分量。

数量积可用于计算两个向量之间的夹角。两个向量之间的夹角

由以下公式给出:

cos θ = a.b / (|a| |b|)。

其中 θ 是两个向量之间的夹角,|a| 和 |b| 是两个向量的幅

度,而 a.b 是两个向量的数量积。

数量积还可以用于计算力所做的功。力所做的功由以下公式给

出:

W = F.d.

其中 W 是所做的功,F 是力,d 是位移。


本文标签: 向量 数量 公式 用于 坐标