admin 管理员组文章数量: 1087817
PAT甲级 1069 The Black Hole of Numbers
PAT甲级 1069 The Black Hole of Numbers
题目链接
For any 4-digit integer except the ones with all the digits being the same, if we sort the digits in non-increasing order first, and then in non-decreasing order, a new number can be obtained by taking the second number from the first one. Repeat in this manner we will soon end up at the number 6174 – the black hole of 4-digit numbers. This number is named Kaprekar Constant.
For example, start from 6767, we’ll get:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...
Given any 4-digit number, you are supposed to illustrate the way it gets into the black hole.
Input Specification:
Each input file contains one test case which gives a positive integer N in the range ( 0 , 1 0 4 ) (0,10^4) (0,104).
Output Specification:
If all the 4 digits of N are the same, print in one line the equation N - N = 0000. Else print each step of calculation in a line until 6174 comes out as the difference. All the numbers must be printed as 4-digit numbers.
Sample Input 1:
6767
Sample Output 1:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
Sample Input 2:
2222
Sample Output 2:
2222 - 2222 = 0000
简单模拟,唯一的坑点就是要自动补零,python代码如下:
n=input().rjust(4,'0')
while 1:n=list(n)n=''.join(sorted(n))[::-1]print('{} - {} = {}'.format(n,n[::-1].rjust(4,'0'),str(int(n)-int(n[::-1])).rjust(4,'0')))n=str(int(n)-int(n[::-1])).rjust(4,'0')if int(n)==6174 or int(n)==0:break
本文标签: PAT甲级 1069 The Black Hole of Numbers
版权声明:本文标题:PAT甲级 1069 The Black Hole of Numbers 内容由网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://www.roclinux.cn/p/1699084278a327246.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论