admin 管理员组文章数量: 1086019
2024年4月21日发(作者:手机json文件怎么打开并编辑)
螺旋矩阵
问题
1 按顺时针方向构建一个m * n的螺旋矩阵(或按顺时针方向螺旋访问一个m * n
的矩阵):
2 在不构造螺旋矩阵的情况下,给定坐标i、j值求其对应的值f(i, j)。
比如对11 * 7矩阵, f(6, 0) = 27 f(6, 1) = 52 f(6, 3) = 76 f(6, 4) = 63
构建螺旋矩阵
对m * n 矩阵,最先访问最外层的m * n的矩形上的元素,接着再访问里面一层的
(m - 2) * (n - 2) 矩形上的元素…… 最后可能会剩下一些元素,组成一个点或一条线
(见图1)。
1
对第i个矩形(i=0, 1, 2 …),4个顶点的坐标为:
(i, i) ----------------------------------------- (i, n–1-i)
| |
| |
| |
(m-1-i, i) ----------------------------------------- (m-1-i, n-1-i)
要访问该矩形上的所有元素,只须用4个for循环,每个循环访问一个点和一边条边
上的元素即可(见图1)。另外,要注意对最终可能剩下的1 * k 或 k * 1矩阵再做个特
殊处理。
代码:
inline void act(int t) { printf("%3d ", t); }
const int small = col < row ? col : row;
const int count = small / 2;
for (int i = 0; i < count; ++i) {
2
const int C = col - 1 - i;
const int R = row - 1 - i;
for (int j = i; j < C; ++j) act(arr[i][j]);
for (int j = i; j < R; ++j) act(arr[j][C]);
for (int j = C; j > i; --j) act(arr[R][j]);
for (int j = R; j > i; --j) act(arr[j][i]);
}
if (small & 1) {
const int i = count;
if (row <= col) for (int j = i; j < col - i; ++j) act(arr[i][j]);
else for (int j = i; j < row - i; ++j) act(arr[j][i]);
}
如果只是构建螺旋矩阵的话,稍微修改可以实现4个for循环独立:
3
const int small = col < row ? col : row;
const int count = small / 2;
for (int i = 0; i < count; ++i) {
const int C = col - 1 - i;
const int R = row - 1 - i;
const int cc = C - i;
const int rr = R - i;
const int s = 2 * i * (row + col - 2 * i) + 1;
for (int j = i, k = s; j < C; ++j) arr[i][j] = k++;
for (int j = i, k = s + cc; j < R; ++j) arr[j][C] = k++;
for (int j = C, k = s + cc + rr; j > i; --j) arr[R][j] = k++;
for (int j = R, k = s + cc * 2 + rr; j > i; --j) arr[j][i] = k++;
}
4
if (small & 1) {
const int i = count;
int k = 2 * i * (row + col - 2 * i) + 1;
if (row <= col) for (int j = i; j < col - i; ++j) arr[i][j] = k++;
else for (int j = i; j < row - i; ++j) arr[j][i] = k++;
}
关于s的初始值取 2 * i * (row + col - 2 * i) + 1请参考下一节。
由于C++的二维数组是通过一维数组实现的。二维数组的实现一般有下面三种:
静态分配足够大的数组;
动态分配一个长为m*n的一维数组;
动态分配m个长为n的一维数组,并将它们的指针存在一个长为m的一维数组。
二维数组的不同实现方法,对函数接口有很大影响。
给定坐标直接求值f(x, y)
5
如前面所述,对第i个矩形(i=0, 1, 2 …),4个顶点的坐标为:
(i, i) ----------------------------------------- (i, n–1-i)
| |
| |
| |
(m-1-i, i) ----------------------------------------- (m-1-i, n-1-i)
对给定的坐标(x,y),如果它落在某个这类矩形上,显然其所在的矩形编号为:
k = min{x, y, m-1-x, n-1-y}
m*n矩阵删除访问第k个矩形前所访问的所有元素后,可得到(m-2*k)*(n-2*k)矩阵,
因此已访问的元素个数为:m*n-(m-2*k)*(n-2*k)=2*k*(m+n-2*k),因而 (k,k)对应的值
为:
T(k) = 2*k*(m+n-2*k)+ 1
对某个矩形,设点(x, y)到起始点(k,k)的距离d = x-k + y-k = x+y-2*k
① 向右和向下都只是横坐标或纵坐标增加1,这两条边上的点满足f(x, y) = T(k) +
d
6
② 向左和向下都只是横坐标或纵坐标减少1,这两条边上的点满足f(x, y) = T(k+1)
- d
如果给定坐标的点(x, y),不在任何矩形上,则它在一条线上,仍满足f(x, y) = T(k)
+ d
int getv(int row, int col, int max_row, int max_col) // row < max_row, col
< max_col
{
int level = min(min(row, max_row - 1 - row), min(col, max_col - 1 - co
l));
int distance = row + col - level * 2;
int start_value = 2 * level * (max_row + max_col - 2 * level) + 1;
if (row == level || col == max_col - 1 - level ||
(max_col < max_row && level * 2 + 1 == max_col))
return start_value + distance;
int next_value = start_value + (max_row + max_col - 4 * level - 2) * 2;
7
return next_value - distance;
}
特别说明
上面的讨论都是基于m*n矩阵的,对于特例n*n矩阵,可以做更多的优化。比如构
建螺旋矩阵,如果n为奇数,则矩阵可以拆分为几个矩形加上一个点。前面的条件判断可
以优化为:
if (small & 1) act[count][count];
甚至可以调整4个for循环的遍历元素个数(前面代码,每个for循环遍历n-1-2*i
个元素,可以调整为:n-2*i,n-1-2*i, n-1-2*i,n-2-2*i)从而达到省略if判断。
测试代码
代码1:
//螺旋矩阵,给定坐标直接求值 by flyinghearts
///flyinghearts
#include
#include
8
using std::min;
using std::cout;
/*
int getv2(int row, int col, int max_row, int max_col) // row < max_row, co
l < max_col
{
int level = min(min(row, max_row - 1 - row), min(col, max_col - 1 - col));
int distance = row + col - level * 2;
int start_value = 2 * level * (max_row + max_col - 2 * level) + 1;
if (row == level || col == max_col - 1 - level) return start_value + distanc
e;
//++level; int next_value = 2 * level * (max_row + max_col - 2 * level) +
1;
int next_value = start_value + (max_row + max_col - 4 * level - 2) * 2;
if (next_value > max_col * max_row) return start_value + distance;
9
return next_value - distance;
}
*/
int getv(int row, int col, int max_row, int max_col) // row < max_row, col
< max_col
{
int level = min(min(row, max_row - 1 - row), min(col, max_col - 1 - co
l));
int distance = row + col - level * 2;
int start_value = 2 * level * (max_row + max_col - 2 * level) + 1;
if (row == level || col == max_col - 1 - level || (max_col < max_row &
& level * 2 + 1 == max_col))
return start_value + distance;
//++level; int next_value = 2 * level * (max_row + max_col - 2 * level) +
1;
10
int next_value = start_value + (max_row + max_col - 4 * level - 2) * 2;
return next_value - distance;
}
int main()
{
int test[][2] = {{5, 5}, {5, 7}, {7, 5}, {4, 4}, {4, 6}, {6, 4}};
const int sz = sizeof(test) / sizeof(test[0]);
for (int k = 0; k < sz; ++k) {
int M = test[k][0];
int N = test[k][1];
for (int i = 0; i < M; ++i) {
for (int j = 0; j < N; ++j)
(4), cout << getv(i, j, M, N) << " ";
11
cout << "n";
}
cout << "n";
}
}
代码2:
//螺旋矩阵 by flyinghearts#
///flyinghearts
#include
int counter = 0;
inline void act(int& t)
{
//std::(3), std::cout << t;
12
t = ++::counter;
}
void act_arr(int *arr, int row, int col, int max_col) //col < max_col
{
const int small = col < row ? col : row;
const int count = small / 2;
int *p = arr;
for (int i = 0; i < count; ++i) {
const int C = col - 1 - 2 * i;
const int R = row - 1 - 2 * i;
for (int j = 0; j < C; ++j) act(*p++);
for (int j = 0; j < R; ++j) act(*p), p += max_col;
for (int j = 0; j < C; ++j) act(*p--);
13
for (int j = 0; j < R; ++j) act(*p), p -= max_col;
p += max_col + 1;
}
if (small & 1) {
const int i = count;
if (row <= col) for (int j = 0; j < col - 2 * i; ++j) act(*p++);
else for (int j = 0; j < row - 2 * i; ++j) act(*p), p += max_col;
}
}
void act_arr(int* arr[], int row, int col)
{
const int small = col < row ? col : row;
const int count = small / 2;
14
for (int i = 0; i < count; ++i) {
const int C = col - 1 - i;
const int R = row - 1 - i;
for (int j = i; j < C; ++j) act(arr[i][j]);
for (int j = i; j < R; ++j) act(arr[j][C]);
for (int j = C; j > i; --j) act(arr[R][j]);
for (int j = R; j > i; --j) act(arr[j][i]);
}
if (small & 1) {
const int i = count;
if (row <= col) for (int j = i; j < col - i; ++j) act(arr[i][j]);
else for (int j = i; j < row - i; ++j) act(arr[j][i]);
}
15
}
void act_arr_2(int* arr[], int row, int col)
{
const int small = col < row ? col : row;
const int count = small / 2;
for (int i = 0; i < count; ++i) {
const int C = col - 1 - i;
const int R = row - 1 - i;
const int cc = C - i;
const int rr = R - i;
const int s = 2 * i * (row + col - 2 * i) + 1;
for (int j = i, k = s; j < C; ++j) arr[i][j] = k++;
for (int j = i, k = s + cc; j < R; ++j) arr[j][C] = k++;
16
for (int j = C, k = s + cc + rr; j > i; --j) arr[R][j] = k++;
for (int j = R, k = s + cc * 2 + rr; j > i; --j) arr[j][i] = k++;
}
if (small & 1) {
const int i = count;
int k = 2 * i * (row + col - 2 * i) + 1;
if (row <= col) for (int j = i; j < col - i; ++j) arr[i][j] = k++;
else for (int j = i; j < row - i; ++j) arr[j][i] = k++;
}
}
void print_arr(int *arr, int row, int col, int max_col) //col < max_col
{
for (int i = 0, *q = arr; i < row; ++i, q += max_col) {
17
for (int *p = q; p < q + col; ++p)
std::(4), std::cout << *p;
std::cout << "n";
}
std::cout << "n";
}
void print_arr(int* a[], int row, int col) //col < max_col
{
for (int i = 0; i < row; ++i) {
for (int j = 0; j < col; ++j)
std::(4), std::cout << a[i][j];
std::cout << "n";
}
18
std::cout << "n";
}
void test_1()
{
const int M = 25;
const int N = 25;
int a[M][N];
int test[][2] = {{5, 5}, {5, 7}, {7, 5}, {4, 4}, {4, 6}, {6, 4}};
const int sz = sizeof(test) / sizeof(test[0]);
std::cout << "Test 1:n";
for (int i = 0; i < sz; ++i) {
int row = test[i][0];
int col = test[i][1];
19
if (row < 0 || row > M) row = 3;
if (col < 0 || col > N) col = 3;
::counter = 0;
act_arr(&a[0][0], row, col, N);
print_arr(&a[0][0], row, col, N);
}
}
void test_2()
{
int test[][2] = {{5, 5}, {5, 7}, {7, 5}, {4, 4}, {4, 6}, {6, 4}};
const int sz = sizeof(test) / sizeof(test[0]);
std::cout << "Test 2:n";
for (int i = 0; i < sz; ++i) {
20
int row = test[i][0];
int col = test[i][1];
int **arr = new int*[row];
for (int i = 0; i < row; ++i) arr[i] = new int[col];
::counter = 0;
act_arr(arr, row, col);
print_arr(arr, row, col);
for (int i = 0; i < row; ++i) delete[] arr[i];
delete[] arr;
}
}
int main()
{
21
test_1();
test_2();
}
作者: flyinghearts
出处: /flyinghearts/
本文采用知识共享署名-非商业性使用-相同方式共享 2.5 中国大陆许可协议进行许
可,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,
否则保留追究法律责任的权利。
方阵填数
答案:
22
#include
using namespace std;
int a[10][10];
void Fun(int n)
{
int m = 1,j,i;
for(i = 0; i < n/2; i++)
{
for(j = 0; j < n-i; j++)
{
if(a[i][j] == 0)
a[i][j] = m++;
}
23
for(j = i+1; j < n-i; j++)
{
if(a[j][n-1-i] == 0)
a[j][n-1-i] = m++;
}
for(j = n-i-1; j > i; j--)
{
if(a[n-i-1][j] == 0)
a[n-i-1][j] = m++;
}
for(j = n-i-1; j > i; j--)
{
if(a[j][i] == 0)
24
a[j][i] = m++;
}
}
if(n%2==1)
a[n/2][n/2] = m;
}
void main()
{
int n, i, j;
cin>>n;
for(int i = 0; i < n; i++)
{
for(int j = 0; j < n; j++)
25
a[i][j] = 0;
}
Fun(n);
for(i = 0; i < n; i++)
{
for(int j = 0; j < n; j++)
{
cout << a[i][j] << " ";
}
cout < } } 26
版权声明:本文标题:螺旋矩阵 内容由网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://www.roclinux.cn/p/1713662033a645902.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论