admin 管理员组文章数量: 1086019
2024年12月28日发(作者:tcpip为什么三次握手)
学习必备 欢迎下载
【生物化学:名词解释大全】
第一章 蛋 白 质
1.两性离子(dipolarion)
2.必需氨基酸(essential amino acid)
3.等电点(isoelectric point,pI)
4.稀有氨基酸(rare amino acid)
5.非蛋白质氨基酸(nonprotein amino acid)
6.构型(configuration)
7.蛋白质的一级结构(protein primary
structure)
8.构象(conformation)
9.蛋白质的二级结构(protein secondary
structure)
10.结构域(domain)
11.蛋白质的三级结构(protein tertiary
structure)
12.氢键(hydrogen bond)
13.蛋白质的四级结构(protein quaternary
structure)
14.离子键(ionic bond)
15.超二级结构(super-secondary structure)
16.疏水键(hydrophobic bond)
17.范德华力( van der Waals force)
18.盐析(salting out)
19.盐溶(salting in)
20.蛋白质的变性(denaturation)
21.蛋白质的复性(renaturation)
22.蛋白质的沉淀作用(precipitation)
23.凝胶电泳(gel electrophoresis)
24.层析(chromatography)
第二章 核 酸
1.单核苷酸(mononucleotide)
2.磷酸二酯键(phosphodiester bonds)
3.不对称比率(dissymmetry ratio)
4.碱基互补规律(complementary base
pairing)
5.反密码子(anticodon)
6.顺反子(cistron)
7.核酸的变性与复性(denaturation、
renaturation)
8.退火(annealing)
9.增色效应(hyper chromic effect)
10.减色效应(hypo chromic effect)
11.噬菌体(phage)
12.发夹结构(hairpin structure)
13.DNA 的熔解温度(melting temperature
T
m
)
14.分子杂交(molecular hybridization)
15.环化核苷酸(cyclic nucleotide)
第三章 酶与辅酶
1.米氏常数(K
m
值)
2.底物专一性(substrate specificity)
3.辅基(prosthetic group)
4.单体酶(monomeric enzyme)
5.寡聚酶(oligomeric enzyme)
6.多酶体系(multienzyme system)
7.激活剂(activator)
8.抑制剂(inhibitor inhibiton)
9.变构酶(allosteric enzyme)
10.同工酶(isozyme)
11.诱导酶(induced enzyme)
12.酶原(zymogen)
13.酶的比活力(enzymatic compare energy)
14.活性中心(active center)
第四章 生物氧化与氧化磷酸化
1. 生物氧化(biological oxidation)
2. 呼吸链(respiratory chain)
3. 氧化磷酸化(oxidative phosphorylation)
4. 磷氧比P/O(P/O)
5. 底物水平磷酸化(substrate level
phosphorylation)
6. 能荷(energy charg
第五章 糖 代 谢
1.糖异生(glycogenolysis)
2.Q 酶(Q-enzyme)
3.乳酸循环(lactate cycle)
4.发酵(fermentation)
5.变构调节(allosteric regulation)
6.糖酵解途径(glycolytic pathway)
7.糖的有氧氧化(aerobic oxidation)
8.肝糖原分解(glycogenolysis)
9.磷酸戊糖途径(pentose phosphate pathway)
10.D-酶(D-enzyme)
11.糖核苷酸(sugar-nucleotide)
第六章 脂类代谢
学习必备 欢迎下载
1. 必需脂肪酸(essential fatty acid)
2. 脂肪酸的α-氧化(α- oxidation)
3. 脂肪酸的β-氧化(β- oxidation)
4. 脂肪酸的ω-氧化(ω- oxidation)
5. 乙醛酸循环(glyoxylate cycle)
6. 柠檬酸穿梭(citriate shuttle)
7. 乙酰CoA 羧化酶系(acetyl-CoA
carnoxylase)
8. 脂肪酸合成酶系统(fatty acid synthase
system)
第八章 含氮化合物代谢
1.蛋白酶(Proteinase)
2.肽酶(Peptidase)
3.氮平衡(Nitrogen balance)
4.生物固氮(Biological nitrogen fixation)
5.硝酸还原作用(Nitrate reduction)
6.氨的同化(Incorporation of ammonium ions
into organic molecules)
7.转氨作用(Transamination)
8.尿素循环(Urea cycle)
9.生糖氨基酸(Glucogenic amino acid)
10.生酮氨基酸(Ketogenic amino acid)
11.核酸酶(Nuclease)
12.限制性核酸内切酶(Restriction
endonuclease)
13.氨基蝶呤(Aminopterin)
14.一碳单位(One carbon unit)
第九章 核酸的生物合成
1.半保留复制(semiconservative replication)
2.不对称转录(asymmetric trancription)
3.逆转录(reverse transcription)
4.冈崎片段(Okazaki fragment)
5.复制叉(replication fork)
6.领头链(leading strand)
7.随后链(lagging strand)
8.有意义链(sense strand)
9.光复活(photoreactivation)
10.重组修复(recombination repair)
11.内含子(intron)
12.外显子(exon)
13.基因载体(genonic vector)
14.质粒(plasmid)
第十一章 代谢调节
1.诱导酶(Inducible enzyme)
2.标兵酶(Pacemaker enzyme)
3.操纵子(Operon)
4.衰减子(Attenuator)
5.阻遏物(Repressor)
6.辅阻遏物(Corepressor)
7.降解物基因活化蛋白(Catabolic gene
activator protein)
8.腺苷酸环化酶(Adenylate cyclase)
9.共价修饰(Covalent modification)
10.级联系统(Cascade system)
11.反馈抑制(Feedback inhibition)
12.交叉调节(Cross regulation)
13.前馈激活(Feedforward activation)
14.钙调蛋白(Calmodulin)
第十二章 蛋白质的生物合成
1.密码子(codon)
2.反义密码子(synonymous codon)
3.反密码子(anticodon)
4.变偶假说(wobble hypothesis)
5.移码突变(frameshift mutant)
6.氨基酸同功受体(isoacceptor)
7.反义RNA(antisense RNA)
8.信号肽(signal peptide)
9.简并密码(degenerate code)
10.核糖体(ribosome)
11.多核糖体(poly some)
12.氨酰基部位(aminoacyl site)
13.肽酰基部位(peptidy site)
14.肽基转移酶(peptidyl transferase)
15.氨酰- tRNA 合成酶(amino acy-tRNA
synthetase)
16.蛋白质折叠(protein folding)
17.核蛋白体循环(polyribosome)
18.锌指(zine finger)
19.亮氨酸拉链(leucine zipper)
20.顺式作用元件(cis-acting element)
21.反式作用因子(trans-acting factor)
22.螺旋-环-螺旋(helix-loop-helix)
学习必备 欢迎下载
第一章 蛋白质
1.两性离子:指在同一氨基酸分子上含有等量的正负两种电荷,又称兼性离子或偶极离子。
2.必需氨基酸:指人体(和其它哺乳动物)自身不能合成,机体又必需,需要从饮食中获得的氨基酸。
3. 氨基酸的等电点:指氨基酸的正离子浓度和负离子浓度相等时的pH 值,用符号pI表示。
4.稀有氨基酸:指存在于蛋白质中的20 种常见氨基酸以外的其它罕见氨基酸,它们是正常氨基酸的衍生物。
5.非蛋白质氨基酸:指不存在于蛋白质分子中而以游离状态和结合状态存在于生物体的各种组织和细胞的氨基酸。
6.构型:指在立体异构体中不对称碳原子上相连的各原子或取代基团的空间排布。构型的转变伴随着共价键的断
裂和重新形成。
7.蛋白质的一级结构:指蛋白质多肽链中氨基酸的排列顺序,以及二硫键的位置。
8.构象:指有机分子中,不改变共价键结构,仅单键周围的原子旋转所产生的原子的空间排布。一种构象改变为
另一种构象时,不涉及共价键的断裂和重新形成。构象改变不会改变分子的光学活性。
9.蛋白质的二级结构:指在蛋白质分子中的局部区域内,多肽链沿一定方向盘绕和折叠的方式。
10.结构域:指蛋白质多肽链在二级结构的基础上进一步卷曲折叠成几个相对独立的近似球形的组装体。
11.蛋白质的三级结构:指蛋白质在二级结构的基础上借助各种次级键卷曲折叠成特定的球状分子结构的构象。
12.氢键:指蛋白质在二级结构的基础上借助各种次级键卷曲折叠成特定的球状分子结构的构象。
13.蛋白质的四级结构:指多亚基蛋白质分子中各个具有三级结构的多肽链以适当方式聚合所呈现的三维结构。
14.离子键:带相反电荷的基团之间的静电引力,也称为静电键或盐键。
15.超二级结构:指蛋白质分子中相邻的二级结构单位组合在一起所形成的有规则的、在空间上能辨认的二级结构
组合体。
16.疏水键:非极性分子之间的一种弱的、非共价的相互作用。如蛋白质分子中的疏水侧链避开水相而相互聚集而
形成的作用力。
17.范德华力:中性原子之间通过瞬间静电相互作用产生的一种弱的分子间的力。当两个原子之间的距离为它们的
范德华半径之和时,范德华力最强。
18.盐析:在蛋白质溶液中加入一定量的高浓度中性盐(如硫酸氨),使蛋白质溶解度降低并沉淀析出的现象称为
盐析。
19.盐溶:在蛋白质溶液中加入少量中性盐使蛋白质溶解度增加的现象。
20.蛋白质的变性作用:蛋白质分子的天然构象遭到破坏导致其生物活性丧失的现象。蛋白质在受到光照、热、有
机溶剂以及一些变性剂的作用时,次级键遭到破坏导致天然构象的破坏,但其一级结构不发生改变。
21.蛋白质的复性:指在一定条件下,变性的蛋白质分子恢复其原有的天然构象并恢复生物活性的现象。
22.蛋白质的沉淀作用:在外界因素影响下,蛋白质分子失去水化膜或被中和其所带电荷,导致溶解度降低从而使
蛋白质变得不稳定而沉淀的现象称为蛋白质的沉淀作用。
23.凝胶电泳:以凝胶为介质,在电场作用下分离蛋白质或核酸等分子的分离纯化技术。
24.层析:按照在移动相(可以是气体或液体)和固定相(可以是液体或固体)之间的分配比例将混合成分分开的
技术。
第二章 核酸
1. 单核苷酸(mononucleotide):核苷与磷酸缩合生成的磷酸酯称为单核苷酸。
2. 磷酸二酯键(phosphodiester bonds):单核苷酸中,核苷的戊糖与磷酸的羟基之间形成的磷酸酯键。
3. 不对称比率(dissymmetry ratio):不同生物的碱基组成由很大的差异,这可用不对称比率(A+T)/(G+C)示。
4. 碱基互补规律(complementary base pairing):在形成双螺旋结构的过程中,由于各种碱基的大小与结构的不同,使
得碱基之间的互补配对只能在G…C(或C…G)和A…T(或T…A)之间进行,这种碱基配对的规律就称为碱基配对规
律(互补规律)。
5. 反密码子(anticodon):在tRNA 链上有三个特定的碱基,组成一个密码子,由这些反密码子按碱基配对原则识
别mRNA 链上的密码子。反密码子与密码子的方向相反。
6. 顺反子(cistron):基因功能的单位;一段染色体,它是一种多肽链的密码;一种结构基因。
7. 核酸的变性、复性(denaturation、renaturation):当呈双螺旋结构的DNA 溶液缓慢加热时,其中的氢键便断开,
双链DNA 便脱解为单链,这叫做核酸的“溶解”或变性。在适宜的温度下,分散开的两条DNA 链可以完全重新结
学习必备 欢迎下载
合成和原来一样的双股螺旋。这个DNA 螺旋的重组过程称为“复性”。
8. 退火(annealing):当将双股链呈分散状态的DNA 溶液缓慢冷却时,它们可以发生
不同程度的重新结合而形成双链螺旋结构,这现象称为“退火”。
9. 增色效应(hyper chromic effect):当DNA 从双螺旋结构变为单链的无规则卷曲状态时,它在260nm 处的吸收
便增加,这叫“增色效应”。
10. 减色效应(hypo chromic effect):DNA 在260nm 处的光密度比在DNA 分子中的各个碱基在260nm 处吸收的
光密度的总和小得多(约少35%~40%), 这现象称为“减色效应”。
11. 噬菌体(phage):一种病毒,它可破坏细菌,并在其中繁殖。也叫细菌的病毒。
12. 发夹结构(hairpin structure):RNA 是单链线形分子,只有局部区域为双链结构。这些结构是由于RNA 单链
分子通过自身回折使得互补的碱基对相遇,形成氢键结合而成的,称为发夹结构。
13. DNA 的熔解温度(T
m
值):引起DNA 发生“熔解”的温度变化范围只不过几度,这个温度变化范围的中点称
为熔解温度(T
m
)。
14. 分子杂交(molecular hybridization):不同的DNA 片段之间,DNA 片段与RNA 片段之间,如果彼此间的核苷
酸排列顺序互补也可以复性,形成新的双螺旋结构。这种按照互补碱基配对而使不完全互补的两条多核苷酸相互结
合的过程称为分子杂交。
15. 环化核苷酸(cyclic nucleotide):单核苷酸中的磷酸基分别与戊糖的3’-OH 及5’-OH形成酯键,这种磷酸内酯的结
构称为环化核苷酸。
第三章 酶与辅酶
1.米氏常数(K
m
值):用K
m
值表示,是酶的一个重要参数。K
m
值是酶反应速度(V)达到最大反应速度(V
max
)
一半时底物的浓度(单位M 或mM)。米氏常数是酶的特征常数,只与酶的性质有关,不受底物浓度和酶浓度的影
响。
2.底物专一性:酶的专一性是指酶对底物及其催化反应的严格选择性。通常酶只能催化一种化学反应或一类相似
的反应,不同的酶具有不同程度的专一性,酶的专一性可分为三种类型:绝对专一性、相对专一性、立体专一性。
3.辅基:酶的辅因子或结合蛋白质的非蛋白部分,与酶或蛋白质结合得非常紧密,用透析法不能除去。
4.单体酶:只有一条多肽链的酶称为单体酶,它们不能解离为更小的单位。分子量为13,000——35,000。
5.寡聚酶:有几个或多个亚基组成的酶称为寡聚酶。寡聚酶中的亚基可以是相同的,也可以是不同的。亚基间以
非共价键结合,容易为酸碱,高浓度的盐或其它的变性剂分离。寡聚酶的分子量从35 000 到几百万。
6.多酶体系:由几个酶彼此嵌合形成的复合体称为多酶体系。多酶复合体有利于细胞中一系列反应的连续进行,
以提高酶的催化效率,同时便于机体对酶的调控。多酶复合体的分子量都在几百万以上。
7.激活剂:凡是能提高酶活性的物质,都称激活剂,其中大部分是离子或简单的有机化合物。
8.抑制剂:能使酶的必需基团或酶活性部位中的基团的化学性质改变而降低酶的催化活性甚至使酶的催化活性完
全丧失的物质。
9.变构酶:或称别构酶,是代谢过程中的关键酶,它的催化活性受其三维结构中的构象变化的调节。
10.同工酶:是指有机体内能够催化同一种化学反应,但其酶蛋白本身的分子结构组成却有所不同的一组酶。
11.诱导酶:是指当细胞中加入特定诱导物后诱导产生的酶,它的含量在诱导物存在下显著增高,这种诱导物往往
是该酶底物的类似物或底物本身。
12.酶原:酶的无活性前体,通常在有限度的蛋白质水解作用后,转变为具有活性的酶。
13.酶的比活力:比活力是指每毫克蛋白质所具有的活力单位数,可以用下式表示:
活力单位数
比活力=
蛋白质量(mg)
14.活性中心:酶分子中直接与底物结合,并催化底物发生化学反应的部位,称为酶的活性中心。
第四章 生物氧化与氧化磷酸化
1. 生物氧化: 生物体内有机物质氧化而产生大量能量的过程称为生物氧化。生物氧化在细胞内进行,氧化过程
消耗氧放出二氧化碳和水,所以有时也称之为“细胞呼吸”或“细胞氧化”。生物氧化包括:有机碳氧化变成CO
2
;
底物氧化脱氢、氢及电子通过呼吸链传递、分子氧与传递的氢结成水;在有机物被氧化成CO
2
和H
2
O的同时,释放
的能量使ADP 转变成ATP。
2. 呼吸链:有机物在生物体内氧化过程中所脱下的氢原子,经过一系列有严格排列顺序的传递体组成的传递体系
学习必备 欢迎下载
进行传递,最终与氧结合生成水,这样的电子或氢原子的传递体系称为呼吸链或电子传递链。电子在逐步的传递过
程中释放出能量被用于合成ATP,以作为生物体的能量来源。
3. 氧化磷酸化:在底物脱氢被氧化时,电子或氢原子在呼吸链上的传递过程中伴随ADP 磷酸化生成ATP 的作用,
称为氧化磷酸化。氧化磷酸化是生物体内的糖、脂肪、蛋白质氧化分解合成ATP 的主要方式。
4、磷氧比:电子经过呼吸链的传递作用最终与氧结合生成水,在此过程中所释放的能量用于ADP 磷酸化生成ATP。
经此过程消耗一个原子的氧所要消耗的无机磷酸的分子数(也是生成ATP 的分子数)称为磷氧比值(P/O)。如
NADH 的磷氧比值是3,FADH
2
的磷氧比值是2。
5. 底物水平磷酸化:在底物被氧化的过程中,底物分子内部能量重新分布产生高能磷酸键(或高能硫酯键),由
此高能键提供能量使ADP(或GDP)磷酸化生成ATP(或GTP)的过程称为底物水平磷酸化。此过程与呼吸链的作
用无关,以底物水平磷酸
化方式只产生少量ATP。如在糖酵解(EMP)的过程中,3-磷酸甘油醛脱氢后产生的1,3-二磷酸甘油酸,在磷酸甘
油激酶催化下形成ATP 的反应,以及在2-磷酸甘油酸脱水后产生的磷酸烯醇式丙酮酸,在丙酮酸激酶催化形成ATP
的反应均属底物水平的磷酸化反应。另外,
在三羧酸环(TCA)中,也有一步反应属底物水平磷酸化反应,如α-酮戊二酸经氧化脱羧后生成高能化合物琥珀
酰~CoA,其高能硫酯键在琥珀酰CoA 合成酶的催化下转移给GDP 生成GTP。然后在核苷二磷酸激酶作用下,GTP
又将末端的高能磷酸根转给ADP 生成ATP。
6.能荷:能荷是细胞中高能磷酸状态的一种数量上的衡量,能荷大小可以说明生物体
中ATP-ADP-AMP 系统的能量状态。
能荷=[ATP]+12 [ADP][ATP]+[ADP]+[AMP]
第五章 糖 代 谢
1.糖异生:非糖物质(如丙酮酸乳酸甘油生糖氨基酸等)转变为葡萄糖的过程。
2.Q 酶:Q 酶是参与支链淀粉合成的酶。功能是在直链淀粉分子上催化合成(α-1,6)糖苷键,形成支链淀粉。
3.乳酸循环乳:酸循环是指肌肉缺氧时产生大量乳酸,大部分经血液运到肝脏,通过糖异生作用肝糖原或葡萄糖
补充血糖,血糖可再被肌肉利用,这样形成的循环称乳酸循环。
4.发酵:厌氧有机体把糖酵解生成NADH 中的氢交给丙酮酸脱羧后的产物乙醛,使之生成乙醇的过程称之为酒精
发酵。如果将氢交给病酮酸丙生成乳酸则叫乳酸发酵。
5.变构调节:变构调节是指某些调节物能与酶的调节部位结合使酶分子的构象发生改变,从而改变酶的活性,称
酶的变构调节。
6.糖酵解途径:糖酵解途径指糖原或葡萄糖分子分解至生成丙酮酸的阶段,是体内糖
代谢最主要途径。
7.糖的有氧氧化:糖的有氧氧化指葡萄糖或糖原在有氧条件下氧化成水和二氧化碳的过程。是糖氧化的主要方式。
8.肝糖原分解:肝糖原分解指肝糖原分解为葡萄糖的过程。
9.磷酸戊糖途径:磷酸戊糖途径指机体某些组织(如肝、脂肪组织等)以6-磷酸葡萄糖为起始物在6-磷酸葡萄糖脱
氢酶催化下形成6-磷酸葡萄糖酸进而代谢生成磷酸戊糖为中间代谢物的过程,又称为磷酸已糖旁路。
10.D-酶:一种糖苷转移酶,作用于α-1,4 糖苷键,将一个麦芽多糖的片段转移到葡萄糖、麦芽糖或其它多糖上。
11.糖核苷酸:单糖与核苷酸通过磷酸酯键结合的化合物,是双糖和多糖合成中单糖的活化形式与供体。
第六章 脂类代谢
1.必需脂肪酸:为人体生长所必需但有不能自身合成,必须从事物中摄取的脂肪酸。在脂肪中有三种脂肪酸是人
体所必需的,即亚油酸,亚麻酸,花生四烯酸。
2.α-氧化:α-氧化作用是以具有3-18碳原子的游离脂肪酸作为底物,有分子氧间接参与,经脂肪酸过氧化物酶催
化作用,由α碳原子开始氧化,氧化产物是D-α-羟脂肪酸或少一个碳原子的脂肪酸。
3. 脂肪酸的β-氧化:脂肪酸的β-氧化作用是脂肪酸在一系列酶的作用下,在α碳原子和β碳原子之间断裂,β
碳原子氧化成羧基生成含2个碳原子的乙酰CoA 和比原来少2 个碳原子的脂肪酸。
4. 脂肪酸ω-氧化:ω-氧化是C5、C6、C10、C12脂肪酸在远离羧基的烷基末端碳原子被氧化成羟基,再进一步氧
化而成为羧基,生成α,ω-二羧酸的过程。
5. 乙醛酸循环:一种被修改的柠檬酸循环,在其异柠檬酸和苹果酸之间反应顺序有改变,以及乙酸是用作能量和
学习必备 欢迎下载
中间物的一个来源。某些植物和微生物体内有此循环,他需要二分子乙酰辅酶A的参与;并导致一分子琥珀酸的合
成。
6. 柠檬酸穿梭:就是线粒体内的乙酰CoA 与草酰乙酸缩合成柠檬酸,然后经内膜上的三羧酸载体运至胞液中,在
柠檬酸裂解酶催化下,需消耗ATP 将柠檬酸裂解回草酰乙酸和,后者就可用于脂肪酸合成,而草酰乙酸经还原后
再氧化脱羧成丙酮酸,丙酮酸经内膜载体运回线粒体,在丙酮酸羧化酶作用下重新生成草酰乙酸,这样就可又一次
参与转运乙酰CoA 的循环。
7.乙酰CoA 羧化酶系:大肠杆菌乙酰CoA 羧化酶含生物素羧化酶、生物素羧基载体蛋白(BCCP)和转羧基酶三
种组份,它们共同作用催化乙酰CoA 的羧化反应,生成丙二酸单酰-CoA。
8.脂肪酸合酶系统:脂肪酸合酶系统包括酰基载体蛋白(ACP)和6 种酶,它们分别是:乙酰转酰酶;丙二酸单
酰转酰酶;β-酮脂酰ACP 合成酶;β-酮脂酰ACP 还原酶;β-羟;脂酰ACP 脱水酶;烯脂酰ACP 还原酶。
第八章 含氮化合物代谢
1.蛋白酶:以称肽链内切酶(Endopeptidase),作用于多肽链内部的肽键,生成较原来含氨基酸数少的肽段,不
同来源的蛋白酶水解专一性不同。
2.肽酶:只作用于多肽链的末端,根据专一性不同,可在多肽的N-端或C-端水解下氨基酸,如氨肽酶、羧肽酶、
二肽酶等。
3.氮平衡:正常人摄入的氮与排出氮达到平衡时的状态,反应正常人的蛋白质代谢情况。
4.生物固氮:利用微生物中固氮酶的作用,在常温常压条件下将大气中的氮还原为氨的过程(N
2
+ 3H
2
→ 2 NH
3
)。
5.硝酸还原作用:在硝酸还原酶和亚硝酸还原酶的催化下,将硝态氮转变成氨态氮的过程,植物体内硝酸还原作
用主要在叶和根进行。
6.氨的同化:由生物固氮和硝酸还原作用产生的氨,进入生物体后被转变为含氮有机化合物的过程。
7.转氨作用:在转氨酶的作用下,把一种氨基酸上的氨基转移到α-酮酸上,形成另一种氨基酸。
8.尿素循环:尿素循环也称鸟氨酸循环,是将含氮化合物分解产生的氨转变成尿素的过程,有解除氨毒害的作用。
9.生糖氨基酸:在分解过程中能转变成丙酮酸、α-酮戊二酸乙、琥珀酰辅酶A、延胡索酸和草酰乙酸的氨基酸称
为生糖氨基酸。
10.生酮氨基酸:在分解过程中能转变成乙酰辅酶A 和乙酰乙酰辅酶A 的氨基酸称为生酮氨基酸。
11.核酸酶:作用于核酸分子中的磷酸二酯键的酶,分解产物为寡核苷酸或核苷酸,根据作用位置不同可分为核酸
外切酶和核酸内切酶。
12.限制性核酸内切酶:能作用于核酸分子内部,并对某些碱基顺序有专一性的核酸内切酶,是基因工程中的重要
工具酶。
13.氨基蝶呤:对嘌呤核苷酸的生物合成起竞争性抑制作用的化合物,与四氢叶酸结构相似,又称氨基叶酸。
14.一碳单位:仅含一个碳原子的基团如甲基(CH
3
-、亚甲基(CH
2
=)、次甲基(CH≡)、甲酰基(O=CH-)、
亚氨甲基(HN=CH-)等,一碳单位可来源于甘氨酸、苏氨酸、丝氨酸、组氨酸等氨基酸,一碳单位的载体主要是
四氢叶酸,功能是参与生物分子的修饰。
第九章 核酸的生物合成
1.半保留复制:双链DNA 的复制方式,其中亲代链分离,每一子代DNA 分子由一条亲代链和一条新合成的链组
成。
2.不对称转录:转录通常只在DNA 的任一条链上进行,这称为不对称转录。
3.逆转录:Temin 和Baltimore 各自发现在RNA 肿瘤病毒中含有RNA 指导的DNA 聚合酶,才证明发生逆向转录,
即以RNA 为模板合成DNA。
4.冈崎片段:一组短的DNA 片段,是在DNA 复制的起始阶段产生的,随后又被连接酶连接形成较长的片段。在
大肠杆菌生长期间,将细胞短时间地暴露在氚标记的胸腺嘧啶中,就可证明冈崎片段的存在。冈崎片段的发现为DNA
复制的科恩伯格机理提供了依据。
5.复制叉:复制DNA 分子的Y 形区域。在此区域发生链的分离及新链的合成。
6.领头链:DNA 的双股链是反向平行的,一条链是5
/
→3
/
方向,另一条是3
/
→5
/
方向,上述的起点处合成的领头链,
沿着亲代DNA 单链的3
/
→5
/
方向(亦即新合成的DNA沿5
/
→3
/
方向)不断延长。所以领头链是连续的。
7.随后链:已知的DNA 聚合酶不能催化DNA 链朝3
/
→5
/
方向延长,在两条亲代链起点的3
/
端一侧的DNA 链复制
学习必备 欢迎下载
是不连续的,而分为多个片段,每段是朝5
/
→3
/
方向进行,所以随后链是不连续的。
8.有意义链:即华森链,华森——克里格型DNA 中,在体内被转录的那股DNA 链。简写为Wstrand。
9.光复活:将受紫外线照射而引起损伤的细菌用可见光照射,大部分损伤细胞可以恢复,这种可见光引起的修复
过程就是光复活作用。
10.重组修复:这个过程是先进行复制,再进行修复,复制时,子代DNA 链损伤的对应部位出现缺口,这可通过
分子重组从完整的母链上,将一段相应的多核苷酸片段移至子链的缺口处,然后再合成一段多核昔酸键来填补母链
的缺口,这个过程称为重组修复。
11.内含子:真核生物的mRNA 前体中,除了贮存遗传序列外,还存在非编码序列,称为内含子。
12.外显子:真核生物的mRNA 前体中,编码序列称为外显子。
13.基因载体:外源DNA 片段(目的基因)要进入受体细胞,必须有一个适当的运载工具将带入细胞内,并载着
外源DNA 一起进行复制与表达,这种运载工具称为载体。
14.质粒:是一种在细菌染色体以外的遗传单元,一般由环形双链DNA 构成,其大小从1—200Kb。
第十一章 代谢调节
1. 诱导酶:由于诱导物的存在,使原来关闭的基因开放,从而引起某些酶的合成数量明显增加,这样的酶称为诱
导酶
2. 标兵酶:在多酶促系列反应中,受控制的部位通常是系列反应开头的酶,这个酶一般是变构酶,也称标兵酶。
3. 操纵子:在转录水平上控制基因表达的协调单位,包括启动子(P)、操纵基因(O)和在功能上相关的几个结
构基因。
4. 衰减子:位于结构基因上游前导区调节基因表达的功能单位,前导区转录的前导RNA通过构象变化终止或减弱转
录。
5. 阻遏物:由调节基因产生的一种变构蛋白,当它与操纵基因结合时,能够抑制转录的进行。
6. 辅阻遏物:能够与失活的阻碣蛋白结合,并恢复阻遏蛋白与操纵基因结合能力的物质。辅阻遏物一般是酶反应
的产物。
7. 降解物基因活化蛋白:由调节基因产生的一种cAMP 受体蛋白,当它与cAMP 结合时被激活,并结合到启动子
上促进转录进行。是一种正调节作用。
8. 腺苷酸环化酶:催化ATP 焦磷酸裂解产生环腺苷酸(cAMP)的酶。
9. 共价修饰:某种小分子基团可以共价结合到被修饰酶的特定氨基酸残基上,引起酶
分子构象变化,从而调节代谢的方向和速度。
10. 级联系统:在连锁代谢反应中一个酶被激活后,连续地发生其它酶被激活,导致原始调节信号的逐级放大,这
样的连锁代谢反应系统称为级联系统。
11. 反馈抑制:在代谢反应中,反应产物对反应过程中起作用的酶产生的抑制作用。
12. 交叉调节:代谢产物不仅对本身的反应过程有反馈抑制作用,而且可以控制另一代谢物在不同途径中的合成。
13. 前馈激活:在反应序列中,前身物质对后面的酶起激活作用,使反应向前进行。
14. 钙调蛋白:一种依赖于钙的蛋白激酶,酶蛋白与钙结合引起酶分子构象变化,调解酶的活性。如磷酸化酶激酶
是一种依赖于钙的蛋白激酶。
第十二章 蛋白质的生物合成
1.密码子(codon):存在于信使RNA 中的三个相邻的核苷酸顺序,是蛋白质合成中某一特定氨基酸的密码单位。
密码子确定哪一种氨基酸叁入蛋白质多肽链的特定位置上;共有64 个密码子,其中61 个是氨基酸的密码,3 个是作
为终止密码子。
2.同义密码子(synonym codon):为同一种氨基酸编码的几个密码子之一,例如密码子UUU 和UUC 二者都为苯
丙氨酸编码。
3.反密码子(anticodon):在转移RNA 反密码子环中的三个核苷酸的序列,在蛋白质合成中通过互补的碱基配对,
这部分结合到信使RNA 的特殊密码上。
4.变偶假说(Wobble hypothesis):克里克为解释tRNA 分子如何去识别不止一个密码子而提出的一种假说。据此
假说,反密码子的前两个碱基(3ˊ端)按照碱基配对的一般规律与密码子的前两个(5ˊ端)碱基配对,然而tRNA
反密码子中的第三个碱基,在与密码子上3ˊ端的碱基形成氢键时,则可有某种程度的变动,使其有可能与几种不
学习必备 欢迎下载
同的碱基配对。
5.移码突变(frame-shift mutation):一种突变,其结果为导致核酸的核苷酸顺序之间的正常关系发生改变。移码
突变是由删去或插入一个核苷酸的点突变构成的,在这种情况下,突变点以前的密码子并不改变,并将决定正确的
氨基酸顺序;但突变点以后的所有密码子都将改变。且将决定错误的氨基酸顺序。
6.氨基酸同功受体(isoacceptor):每一个氨基酸可以有多过一个tRNA 作为运载工具,这些tRNA 称为该氨基酸
同功受体。
7.反义RNA(antisense RNA):具有互补序列的RNA。反义RNA 可以通过互补序列与特定的mRNA 相结合,结
合位置包括mRNA 结合核糖体的序列(SD 序列)和起始密码子AUG,从而抑制mRNA 的翻译。又称干扰mRNA 的
互补RNA。
8. 信号肽(signal peptide): 信号肽假说认为,编码分泌蛋白的mRNA在翻译时首先合成的是N 末端带有疏水氨基
酸残基的信号肽,它被内质网膜上的受体识别并与之相结合。信号肽经由膜中蛋白质形成的孔道到达内质网内腔,
随即被位于腔表面的信号肽酶水解,由于它的引导,新生的多肽就能够通过内质网膜进入腔内,最终被分泌到胞外。
翻译结束后,核糖体亚基解聚、孔道消失,内质网膜又恢复原先的脂双层结构。
9. 简并密码(degenerate codon):或称同义密码子(synonym codon),为同一种氨基酸编码几个密码子之一,例
如密码子UUU 和UUC 二者都为苯丙氨酸编码。
10.核糖体(ribosome): 核糖体是很多亚细胞核蛋白颗粒中的一个,由大约等量的RNA和蛋白质所组成,是细胞内
蛋白质合成的场所。每个核糖核蛋白体在外形上近似圆形,直径约为20nm。由两个不相同的亚基组成,这两个亚基
通过镁离子和其它非共价键地结合在一起。已证实有四类核糖核蛋白体(细菌、植物、动物和线粒体)它们以其单
体的、亚单位的和核糖核蛋白体RNA 的沉降系数相区别。细菌核蛋白体含有约50 个不同的蛋白质分子和3 个不同
的RNA 分子。小的亚单位含有约20个蛋白质分子和1 个RNA分子。大的亚单位含有约30 个蛋白质分子和2 个RNA
分子。核蛋白体有两个结合转移RNA 的部位(部位和部位),并且也能附上信使RNA,简写为Rb。
11.多核糖体(polysome):在信使核糖核酸链上附着两个或更多的核糖体。
12.氨酰基部位(aminoacyl site):在蛋白质合成过程中进入的氨酰-tRNA结合在核蛋白体上的部位。
13.肽酰基部位(peptidy site):指在蛋白质合成过程中,当下一个氨酰基转移RNA接到核糖核蛋白体的氨基部位时,
肽酰tRNA所在核蛋白体上的结合点。
14.肽基转移酶(peptidyl transferase):蛋白质合成中的一种酶。它能催化正在增长的多肽链与下一个氨基酸之间
形成肽键。在细菌中此酶是50S 核糖核蛋白体亚单位中的蛋白质之一。
15.氨酰-tRNA 合成酶(amino acy-tRNA synthetase):催化氨基酸激活的偶联反应的酶,先是一种氨基酸连接到
AMP 生成一种氨酰腺苷酸,然后连接到转移RNA 分子生成氨酰-tRNA 分子。
16.蛋白质折叠(protein folding):蛋白质的三维构象,称为蛋白质的折叠。是由蛋白质多肽链的氨基酸顺序所决
定的。不同的蛋白质有不同的氨基酸顺序,也就各自按照一定的方式折叠而成该蛋白质独有的天然构象。这个蛋白
质折叠是在自然条件下自发进行的,在生物体内条件下,它是在热力学上最稳定的形式。多肽链在核糖体上一面延
长,一面自发地折叠成其本身独有的构象。当肽链终止延长并从核糖体上脱落时,它也就折叠成天然的三维结构。
17.核蛋白体循环(polyribosome):是指已活化的氨基酸由tRNA转运到核蛋白体合成多肽链的过程。
18.锌指(zine finger):是调控转录的蛋白质因子中与DNA 结合的一种基元,它由大约30 个氨基酸残基的肽段
与锌螯合形成的指形结构,锌以4 个配位键与肽链的Cys或His 残基结合,指形突起的肽段含12-13 个氨基酸残基,
指形突起嵌入DNA 的大沟中,由指形突起或其附近的某些氨基酸侧链与DNA 的碱基结合而实现蛋白质与DNA 的
结合。
19.亮氨酸拉链(leucine zipper):这是真核生物转录调控蛋白与蛋白质及与DNA 结合的基元之一。两个蛋白质分
子近处C 端肽段各自形成两性α-螺旋,α-螺旋的肽段每隔7 个氨基酸残基出现一个亮氨酸残基,两个α-螺旋的
疏水面互相靠拢,两排亮氨酸残基疏水侧链排列成拉链状形成疏水键使蛋白质结合成二聚体,α-螺旋的上游富含
碱性氨基酸(Arg 、Lys)肽段借Arg 、Lys 侧链基团与DNA 的碱基互相结合而实现蛋白质与DNA 的特异结合。
20.顺式作用元件(cis-acting element):真核生物DNA 的转录启动子和增强子等序列,合称顺式作用元件。
21.反式作用因子(trans-acting factor):调控转录的各种蛋白质因子总称反式作用因子。
22.螺旋环螺旋(helix-loop-helix):这种蛋白质基元由两个两性α—螺旋通过一个肽段连结形成螺旋
版权声明:本文标题:生物化学名词解释大全 内容由网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://www.roclinux.cn/p/1735407392a1659893.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
更多相关文章
c编译过程的五个阶段
年月日发(作者:结构体的位定义)编译过程的五个阶段语言是一种高级程序设计语言,需要通过编译器将其转换为计算机可以执行的机器码。语言的编译过程包括五个主要的阶段:预处理、编译、汇编、链接和加载。下面将对这五个阶段进行详细介绍。.预处理阶段()
计算机程序设计员理论题(1)
年月日发(作者:动态罗盘时钟源码)计算机程序设计员理论题().计算机程序设计员的职业道德修养,主要是指()、职业纪律、职业情感以及职业能力的修养。、职业规、职业活动、职业职责、职业资格.计算机程序设计员要有强烈的事业心和责任感,坚持原则()
程序设计基础知识
年月日发(作者:)程序设计基础知识程序设计是计算机科学中的一个重要领域,它涉及到计算机程序的设计、开发和维护。掌握程序设计的基础知识对于从事软件开发或计算机科学相关工作的人来说至关重要。本文将介绍程序设计的基础知识,包括编程语言、算法和数据
计算机程序设计
年月日发(作者:协议组有哪些协议)第章计算机程序设计•教学内容与目标:本章主要介绍程序设计基础知识、程序设计的一般过程和程序设计语言,重点介绍了面向过程程序设计、面向对象程序设计和可视化程序设计的特点,并结合、、、等语言介绍这些程序设计方法
面向对象和面向过程的程序设计语言
年月日发(作者:设置约束)面向对象和面向过程的程序设计语言面向对象和面向过程是两种不同的程序设计语言范式。面向过程的程序设计语言是一种基于过程的编程范式,它将程序看作是一系列的指令集合,这些指令按照一定的顺序执行,以完成特定的任务。而面向对
软件测试三级理论复习资料
年月日发(作者:人民币大写在线转换工具)软件测试三级理论复习资料一、单选题(每题.分)、对“功能测试的回归测试经常要多次重复”的正确理解是()。.回归测试应该执行初测时所用的全部测试用例.回归测试只要执行发现缺陷的那些测试用例即可.通过多次
计算机开机后操作系统的加载过程
0 介绍 最近开始学习操作系统知识,那么对于学习操作系统来说,遇到的第一个问题便是在计算机开机后,它是如何开始工作的。下面是计算机加载操作系统的流程。 1 加载 当我们
封装自己专属的真正的纯净版Windows系统过程记录(4)——进行封装
文章目录 工具准备封装第一阶段ES5S封装第二阶段前的调整ES5S封装第二阶段设置提前测试部署并进入桌面检查经过以上检查,没有问题,最终打包保存系统镜像文件恢复到最后一次快照,
电脑打开计算机显示远程过程调用失败,处置win7系统电脑弹出提示“远程过程调用失败且未执行”的还原步骤...
很多人都懂一些简单的电脑系统问题的解决方案,但是win7系统电脑弹出提示“远程过程调用失败且未执行”的解决思路却鲜为人知,小编前几天就遇到了win7系统电脑弹出提示“远程过程调用失败且未执行”的问
大厂笔试过程知识点记录
这个春招估计也要介绍了吧,自己投的公司也不多吧,投简历的时候,如果你提前批和正常网申都投的话,可能会获得两次笔试面试的机会,我投
用U盘在家用电脑上安装Redhat8.0的一点过程整理Windows10+Redhat8.0
学习Linux都是在虚拟机里面进行,今天突发奇想想尝试着在真机上面来安装一下最新版的Redhat8操作系统。 我的环境是(Windows10Redhat8双系统) &
视频监控设备(NVR、IPC等)如何通过国标GB28181接入到视频监控平台,以及接入过程如何测试视频接入是否成功
目录 一、GBT28181标准和接入概述 1、引言 2、了解GB28181标准 二、准备工作 1、设备支持 2、获取平台参数 3、网络连接: (1)专网接入
windows(XP)下配置使用Git完整过程(msysgit、TortoiseGit)
一、http:code.googlepmsysgitdownloadslist 下载安装msysgit,版本为1.8.4.直接安装到默认目录,不知道为啥安装后这么大࿰
hp打印机2720 笔记本电脑无线连接打印的过程
双击驱动 添加打印机 找到打印机 输入打印机的pin码 打印机会吐出一张纸 纸张上会有pin码 输入pin码 连接成功 找个文档打印
Btspread Search Assistant的开发过程
-————————————————2016年3月1日更新———————————————— 现在btspread已经不能用了,哥准备换掉神器里面的btspread搜索方法,换上btdigg和torrentkitty的搜索函数,大家敬请期待.
linux基础篇:华为openEuler操作系统下载与安装详细过程
openEuler操作系统介绍 openEuler是华为推出的一款开源操作系统,基于Linux发行版。它旨在为企业级应用提供一个安全、稳定、可靠的操作环境。openEuler的开发遵循开源社区的原则࿰
【过程记录】记一次小白从微软官网安装win10系统 | 图解
写在前面的话 划重点:正版 & 免费 亲测没问题,系统是官网下的!! 用大家习惯的PE工具做系统盘有点糟,而且一直会下到挂着羊头卖狗肉的东西。。。在网上找到了一个在官网下载的win10的方法,正版纯净,与大家分享。 链接在评论
深度解读vcruntime140文件问题,从报错到有效修复vcruntime140难题的过程
当启动软件或游戏时,若系统弹出“vcruntime140.dll文件丢失”或“无法找到vcruntime140.dll”错误提示,意味着程序依赖的Microsoft Visual C运行库文件异常
老毛桃装机过程问题记录
目的 就是用老毛桃安装win10系统。 好久不用这些东西了,因为系统装了之后,就很少动了; 今天新同事要重装系统,我就帮助重新装了一下
浏览器中输入网址到看到网页内容经历了哪些过程
本文的步骤是建立在,请求的是一个简单的 HTTP 请求,没有 HTTPS、HTTP2、最简单的 DNS、没有代理、并且服务器没有任何问题的基础上,尽管这是不切实际的。 首先我们会一个个字母去敲击键盘打出来,然后屏幕显示到浏览器的输出框里,
发表评论