admin 管理员组文章数量: 1086019
2024年12月29日发(作者:c语言推荐软件)
PHYSICALREVIEWB74,205326͑2006͒
Structureoftetracenefilmsonhydrogen-passivatedSi(001)studied
viaSTM,AFM,andNEXAFS
ni,,,
*
DepartmentofPhysicsandGuelph-WaterlooPhysicsInstitute,UniversityofGuelph,Guelph,OntarioN1G2W1,Canada
͑Received7June2006;revisedmanuscriptreceived7September2006;published20November2006
͒
Scanningtunnelingmicroscopy͑STM͒,atomicforcemicroscopy͑AFM͒,andnear-edgex-rayabsorption
finestructure͑NEXAFS͒havebeenusedtostudythestructureoftetracenefilmsonhydrogen-passivated
Si͑001͒.STMimagingofthefilmswithnominalthicknessofthreemonolayers͑3ML͒exhibitsthecharac-
teristic“herringbone”molecularpackingknownfromthebulkcrystallinetetracene,showingstandingmol-
ensionsandorientationoftheherringbonelatticeindicateacommensurate
strespondingAFMimagesillus-
tratethatatandabovethethirdlayerofthefilms,theislandsareanisotropic,incontrastwiththesubmonolayer
fractals,arizationdependent
NEXAFSmeasurementsindicatethattheaveragemoleculartiltinganglewithrespecttothesurfacefirst
increaseswiththefilmthicknessupto3ML,thenstabilizesatavalueclosetothebulktetracenecase
binedresultsindicateadistinctgrowthmorphologicalchangethatoccursaroundafew
monolayersofthickness.
DOI:10.1103/PhysRevB.74.205326PACSnumber͑s͒:,68.37.Ϫd,,
UCTION
Drivenbytheirpotentialapplicationsinfutureorganic
electronics,smallaromaticmoleculesareattractingincreas-
ingattention.
1–3
Theyareofinterestinfundamentalstudies
oftheorganicelectronicsbecausemanyofthesemolecules
couldformhighpurityandwell-orderedcrystallinestruc-
turesbysublimationtechniques.
3
Tetraceneisaplanararo-
maticmolecule͑C
18
H
12
͒consistingoffourfused-benzene
rings͓Fig.1͑a͔͒.Thebulkcrystallinestructureoftetraceneis
layeredherringbonemolecularpackingonthe͑001͒plane
͓Fig.1͑b͔͒.
4
Tetracenethinfilmspreparedwithvacuumsub-
limationhavealreadybeenusedtofabricatefield-effecttran-
sistors͑FETs͒,
5
andtetracenefilmshavealsodisplayedim-
pressivepropertiesinorganiclight-emittingFETs.
6
Inorder
toachieveoptimalmaterialpropertiesforthesedevices,the
controlofthefilmgrowthbasedonagoodunderstandingis
r,researchontetracenethinfilmsisfar
ticalstudiesonanotherpolyacene,
pentacene,
7
indicatethatthebulkcrystalline͑001͒facethas
thelowestsurfaceenergy,andiftheinteractionbetweenthe
moleculeswithinalayerismuchstrongerthanthatbetween
themoleculeandsubstrate,asthetypicalcaseforthefilm
growthoninertsubstrates,thefilmdepositedisexpectedto
exhibitthe͑001͒orientation.
7,8
Giventhesimilaritiesinpen-
taceneandtetracenecrystalstructures,theaboveconclusions
saimedonincreas-
ingthemobilityintetracenethinfilmsonsilicondioxide
reportedthatthefilmgrowthisinfavorofformingthree-
dimensional͑3D͒islandswithagranularstructure,andthat
themobilitylimitationisprimarilycausedbythefilmgrowth
properties.
9
Similarstructuralresultswereindicatedbygraz-
ingincidencex-raydiffractionstudythatpolycrystalline
structureswithpolymorphsofdifferentuprightorientations
ofthemoleculeswerefound.
10
Untilrecentlythelayered
morphology,similartothoseinthepentacenefilm
1098-0121/2006/74͑20͒/205326͑9͒
growth,
11–13
hasbeenrealizedintetracenefilmgrowthona
solidsubstrate.
14
A“layer-by-layer”growthwasdemon-
stratedforthetetracenefilmsonhydrogen-passivated
Si͑001͒-2ϫ1substrateswithinoptimalrangeofdeposition
rates,andthatgoodfilmconnectivityandsignificantlyim-
provedgrainsizewereobtained.
14
TheSi͑001͒-2ϫ1surface
usedinthislatterstudyprovidesastructurallywell-defined
͓Fig.2͑a͔͒substratetemplate,
15
whilethehydrogenpassiva-
tion͓Fig.2͑b͔͒removessurfacedanglingbonds
17
resulting
inaninertsubstrate,leadingtoawell-suitedsurfaceforfun-
damentalstudiesontheorganicthinfilmgrowth.
PreviousAFMresultsindicatedthatforatetracenefilm
depositedonH/Si͑001͒themoleculesareinanupright
standingconfiguration,
14
similartothatofpentacenesin
weakmolecule-substrateinteractioncases.
7,8,18
However,
morecompletestructuralcharacterizationsofthetetracene
FIG.1.͑a͒Schematicsideviewofasingletetracenemolecule
͑C
18
H
12
͒s
showninshadedblack,andHatominlightgray.͑b͒Schematictop
view͑alongthemoleculelongaxis͒ofasingleablayeroftetracene
initsbulkcrystallinestructurewithtwomoleculesintheunitcell.
©2006TheAmericanPhysicalSociety205326-1
ALREVIEWB74,205326͑2006͒
taxialdomainsandstabilizesaroundthebulktetracenevalue
ciatethemolecular-levelstructural
informationtoadistinctgrowthmorphologicalchangethat
occursaroundafewmononlayersofthickness.
MENTALDETAILS
preparationandSTM
lSTMimages͑150Åϫ150Å͒of͑a͒aclean
Si͑001͒surface͑filledstate,atabiasof−2.0V͒and͑b͒
monohydride-terminatedSi͑001͒͑emptystate,+2.0V͒,withatun-
hsurfaces,thealternating2ϫ1
and1ϫ2domainsareenergeticallydegenerate,withdimerrows
runningalongthe͓110͔and͓−110͔directions,
imageofthemonohydrideSi͑001͒hasthetunnelingintensitymini-
mumsatthetroughsbetweenthedimerrows,asindicatedbythe
darklinesin͑b͒,clearlydifferentfromthatforanempty-stateim-
ageofacleanSi͑001͒under+2.0V͑seeRef.16͒.
fiucturalpropertiesof
interestincludethein-planeunitcelldimensionsandpos-
sibleregistrationwiththesubstratelatticeandthemolecule
tiltingangles,andinadditiontheevolutionofthesestruc-
turalparameterswiththefipaper,we
reportacombinedmultitechniqueinvestigationonthese
structuralcharacterizationsforthetetracenefi
thatthefilmofafewmonolayerscoveragepossessesappar-
entepitaxialdomainsonthehydrogen-passivatedSi͑001͒
substratewithabulk-kindherringbonelatticeandacompres-
,
theaveragemoleculartiltinganglewithrespecttothesur-
facefirstincreaseswiththecoverageinformingtheexpi-
Thefilmgrowthandinsituscanningtunnelingmicros-
copy͑STM͒studieswereconductedinatwo-chamberultra-
highvacuum͑UHV͒STMandgrowthsystembuiltinour
laboratory.
19
Thetwochamberswereisolatedbyagatevalve
withbasepressureϳ1ϫ10
−10
TorrfortheSTMchamber
andϳ3ϫ10
−9
Torrforthegrowthchamber,respectively.
Samplescanbetransferredbetweenthetwochambersin
vacuumwithatransferarm.
IntheSTMchamber,Si͑001͒waferswerecleanedby
ubstratewasresistivelyheated
andthetemperaturewasmonitoredbyaC-typethermo-
situsubstratecleaningprocedureinvolvesdegassingthesili-
conwaferat970Kandflashingat1470Kforϳ1min,dur-
ingwhichtimethechamberpressureremainedinthe
10
−10
Torrrange.
Atomichydrogenpassivationwascarriedoutwiththe
siliconsubstrateatϳociatingmolecularhy-
drogen͑H
2
͒gasviaatungstenfilamentheatedatϳ1800K,
wegeneratedatomichydrogeninsidetheSTMchamberby
fillingH
2
gasintothechamberatapressureofϳ1
ϫ10
−6
Torrfor30mininordertoformmonohydride
H/Si͑001͒-͑2ϫ1͒surface.
20
Thesubstratewasplaced
ϳ8cmawayfromthetungstenfihehydrogen
passivation,thesubstratewasradiationcooledandtrans-
ferredtothefilmgrowthchamber.
Tetracene͑98%,Sigma-Aldrich͒wasevaporatedinthe
growthchamberwiththesamesetupandprocedurede-
scribedpreviously.
14
Thedepositionrateusedwas
1nm/min,whichwasmonitoredbyaquartzcrystalmi-
filmgrowthwasdonewiththesubstrate
filmgrowth,thesamplewasthen
transferredbacktotheSTMchamberforimaging.
Thehome-madeSTM͑Ref.19͒usesaquadranttube
scannerandtwoinchwormsfortheZandXcoarsemotion.
Swartzentruber
21
typeofcontrolelectronicsanddataacqui-
STMimages
presentedherewereobtainedinaconstant-currentmode.
Thesamplebiasusedinimagingtetracenefilmwas+2.4V
andtunnelingcurrent20pA.
Aftersubstratepreparationandfilmevaporationinsidethe
UHVsystemasdescribedabove,thesamplecanberemoved
scaletopographicimageswereobtainedbyanexsituatomic
forcemicroscopy͑DigitalInstrumentsDimension™3100͒in
tappingmodewithSitips,andtheimageswereanalyzed
usingsoftwareWSxM.
22
205326-2
STRUCTUREOFTETRACENEFILMSONHYDROGEN-…
PHYSICALREVIEWB74,205326͑2006͒
Polarizationdependentcarbon1snearedgex-rayabsorp-
tionfinestructure͑NEXAFS͒͑Ref.23͒characterizationwas
performedexsituonthetetracenefilmswiththreedifferent
thicknesses͑1.2ML,3ML,and15ML͒thatwereprepared
usingthegrowthsystemandproceduredescribedabove.
Multiplesamplesforeachtetracenefilmthicknesswereused
andconsistentresultsamongthedifferentbatchofsamples
AFSexperimentwascarriedatthe
SGMbeamline͑11ID-2͒attheCanadianLightSource͑CLS͒
inSaskatoon,lectronyieldwasusedfor
themeasurementsunderdifferentbeamincidenceangles͑
͒
fluorescenceyieldwas
monitoredsimultaneouslyusingamultichannelplatedetec-
torandmainlyusedforsignaldiagnosticpurposeinthis
metryformanipulatingsampleorienta-
tionwithrespecttothedirectionoftheincomingsynchrotron
x-raybeamwasthesameasthatinRef.23andtheNEXAFS
SGMsolid-statechambervacuumwasbetweenlow10
−8
to
low10
−9
rtoavoidthe
effectofbeamdamageonthesample,eachsamplingarea
wasusedforonepairofthemeasurementsattwoincident
angles͑i.e.,
=90°and10°͒
themeasurements,theCLSstorageringcurrentwasbetween
150mAto200mA,andthemonochromatorentranceand
exitslitsweresettobe5
mand25
m,
monochromatorenergyscalewascalibratedbymeasuring
COgasphaseC1s→
*
resonanceenergyat287.40eV
͑Ref.24͒duringthesameexperimentalrunusingagascell
connectedtothesolidstatechamberontheSGMbeamline.
Thebeamlineopticaltransmissionfunctionwasmeasured
usingaphotodiodeatnormalincidenceandthebackground
dataforthetetracenefilmsamplesweremeasuredfroma
Si͑001͒databackgroundcorrectionandnor-
malizationwerecarriedoutusingthesamemultiplestep
procedureasthatinRef.25.
S
-spaceimaging(STMandAFM)
FIG.3.͑a͒AFMphaseimage͑100
mϫ100
m͒showssub-
monolayertetracenefractals͑darkfeature͒.͑b͒Azoom-intopo-
graphicimage͑20
mϫ20
m͒oftheareainthewhiteframeof
͑a͒.͑c͒Alineprofiletakenfromthewhitebarmarkedbytwo
trianglesin͑b͒showstheheightofϳ1nmforthelayer.
Figure3displaysthesurfacemorphologyofatetracene
submonolayerfilmonH-terminatedSi͑001͒preparedasde-
ctedfromourpreviouswork,
14
thefilmislandsappearasfractalsunderthegrowthcondi-
turedimensioniscloseto100microns͓Fig.
3͑a͔͒,muchlargerthanthevalueweobtainedpreviously
withaH-terminatedsubstratepreparedusingawetchemistry
method.
14
InFig.3͑b͒acloseAFMexaminationrevealsde-
tailsofafractalandalsopresentsthemorphologyofthe
substratewithvisiblesingleatomic-layerstepsthatareori-
sno
clearindicationofinfluencefromthesesingle-atomic-layer
stepsinthedevelopmentofthefractalbranches:branch
splittingandextendingoccuronbothlocalhillsandvalleys
ghtsofthesesubmonolayerislands
aremeasuredusingtheAFMimages,avaluearoundϳ1nm
istypicallyobtained͓Fig.3͑c͔͒,whichissmallerthanthe
lengthofthetetracenemolecule͑Fig.1͒.Thisapparentlayer
thicknesssuggeststhatthemoleculesareessentiallyinan
uprightstandingconfigurationinthesubmonolayerfilmbut
likelytiltedawayfromsurfacenormaldirection.
Tocharacterizetheresultingstructureofthefractalfilms
atthemolecularscale,effortshavebeenmadetouseour
STMtoimagesampleswitheithersubmonolayercoverage
orwithacoveragethathasthetopsurfaceislandsbeingthe
secondmolecularlayer͓i.e.,thenominalthicknessisϳ1.2
ML͑Ref.14͔͒.Sofarnoorderedstructureshavebeenim-
agedfromthefiot
excludethepossibilitythattheabsenceofmolecularfeatures
intheSTMimageofthefilmsisaresultoftheweak
molecule-substrateinteractionsuchthatthesoftfilmbe-
comessusceptibletodeformationsinducedbytheSTM
therhand,theSTMresults
couldalsoindicateapossibilitythatthereisasignificant
205326-3
ALREVIEWB74,205326͑2006͒
ge͑85Åϫ85Å͒ofϳ3MLtetracenefilmon
H/Si͑001͒ngularlatticemimicsthetetracene“her-
ringbone”rdinatesin-
-
entationoftheherringbonelatticeappearstofollowthesubstrate
lattice.
densityofdifferentmoleculartiltingdomainsthatheavily
ethe
fractalformationislargelybasedondiffusion-limitedaggre-
gation͑DLA͒͑hitandstick͒mechanism,
11,14
theas-grown
firstlayercouldbehighlydisordered.
SuccessfulSTMimagingofthemolecularpackinghas
beenrealizedwhenwedepositthreemonolayer͑ML͒͑nomi-
nalthickness͒4showsa
typicalSTMimageofsuchfiracteristic“her-
ringbone”molecularpackingknownfromthebulkcrystal-
linetetraceneisclearlyvisible,withtheintensityprotrusions
ensityprotrusions
formrows,withonerowbeingbrighterthanitsadjacent
rowinanalternatingpattern,andtheunitcellappearsrect-
nSTMimagesofmultipleindependent
samples,wecalibratetheherringbonelattice͑e.g.,Fig.4͒as
witha=7.3±0.6Åandb=5.5±0.6Å,closelyresembling
theabunitcelldimensionsofbulkcrystallinetetracene͑Fig.
1͒r
words,theSTMimageinFig.4providesdirectevidencethat
thefilmiscrystallizedwithstandingtetracenemoleculeson
theabplaneontheinertsubstrateused.
AnotherstrikingfeatureoftheSTMimage͑Fig.4͒isthat
thebrightrows͑i.e.,alongthebaxis͒appearmatchingthe
esamesampleandimag-
ingorientationsettingsasthatusedforthesiliconsubstrate
͓Fig.2͑a͔͒,theb-axisorientationimagedforthetetracene
filminFig.4appearspreciselyalongthe͓110͔directionas
markedinFig.2͑a͒anySTMimages
obtained,theorientationsofthebrightrows͑alongbaxisin
Fig.4͒areeitherasthatshowninFig.4orappearingor-
filmlatticeorientationalignedtothe
crystallinesubstrateindicatesthatthemoleculescanrecog-
nizeandlockintosomespecificstructuresitesonthesub-
strateatthisfilmcoverage.
Itisplausiblethattheherringbonelatticeobserved͑Fig.
4͒hasacommensuratestructuralrelationshiptothesubstrate
tiontotheorientationalignmentbetweenthe
molecularstructureandthecrystallinesubstrateasmen-
tionedabove,thecalibratedspacingbetweenthebrightrows
͑i.e.,thelatticeconstantmeasuredalongaaxis͒alsomatches
wellwiththedistancebetweenthesubstratemonohydride
dimerrows͑7.68Å͒withintheuncertaintyofthemeasure-
hebaxis͑i.e.,brightrow͒directioninFig.4,
thelatticematchingisnotobvious,asneithersubstratedimer
spacing͑3.84Å͒nordimerrowspacing͑7.68Å͒matchthe
r,themultipleofb͑e.g.,5timesaslarge͒in
principlecouldleadtoasuperlatticetomatchthesubstrate
͑as5ϫ6.03Å=8ϫ3.84Å=4ϫ7.68Å͒.Thoughthereisno
visiblesuperlatticemodulationofimagecontrastindicated
fromourSTMdata,theexistenceofthesuperlatticecannot
beexcluded,asthemodulationcausedbytheinterfacecould
besmearedoutwhenimagedfromafewmolecularlayers
above.
Figure5showsanAFMimageofa3MLtetracenefilm
onaH-terminatedSi͑001͒geaddslarge-
scalemorphologyinformationtowhatwelearnedfromthe
rofiletakenatthewhite
bar͑AB͒isshownatthebottomofFig.5,indicatingthe
heightofϳ1.4nmforeverylayerincludingtheburiedfirst
layeratthefirasttotheheight
measuredonthefractalislands͑Fig.1͒,thefirstlayermol-
eculesinthemultilayerregionsmusthavehadtheirorienta-
tionsandpackingrearrangedtoincreasethetiltangleand
eprofileinFig.
5alsoallowsacleardefinitionofthelayers,welabelthem
ontheimagewiththesecondlayermarkedas“2,”andthe
thirdlayeras“3,”eneverobtainanywell-
definedsurfacestructurewithSTMwhenthefilmswerepre-
paredwithonlythefirsttwomonolayerspresented,themo-
lecularlyresolvedSTMimages͑e.g.,Fig.4͒mostlikely
reflectthestructureofthethirdorhigherlayerinthesam-
heless,allthemolecularlyresolved
STMimagesconsistentlyshowthesurfacesymmetryasthat
inFig.4andorientationregistrationtothesubstratelattice
discussedabove.
TheAFMimageshowninFig.5indicatesthatthefilm
hasadramaticstructurechangeandishighlycrystallizedon
,theearlythirdlayer
islands͑Fig.5͒presenttwo-dimensional͑2D͒dendriteswith
preferredbranchorientationsappearingperpendicularto
eachother,inclearcontrasttothesubmonolayerfractalmor-
phology͑Fig.2͒thathaverandomlyorientatedbranches.
Second,thereisasignificantchangeonthenucleationden-
sityontopofthethirdlayer:thedensityofthefourthlayer
islandsismuchhigherthanthatofthepreviouslayers͑
Fig.
6͒,exhibitingalowersurfacediffusivityonthethirdlayer.
Third,thestep-edgenucleationappearseffectiveoncethe
thirdlayerisformed͑e.g.,asmarkedbyanarrowinFig.5͒
thatdoesnotoccurinthelowerlayers,indicatingastructure
changethatcausesEhrlich-Schwoebelstepbarrierformedat
y,theformationofhighlycrys-
tallizedlayersisconsistentwithourSTMresultsthatawell-
-
paredtothefilmmorphologyinFig.6withthatinFig.3,it
205326-4
STRUCTUREOFTETRACENEFILMSONHYDROGEN-…PHYSICALREVIEWB74,205326͑2006͒
caleAFMimage͑50
mϫ45
m͒ofa3ML
tetracenefilmonH/Si͑001͒.Mostoftheanisotropicislandswith
ond
andthethirdlayersaremarkedby2and3intheimage,respec-
rdinatesatthelowerleftcornerindicatethatofthe
substratelattice.
ge͑25
mϫ45
m͒ofa3MLtetracenefilm
onH/Si͑001͒withanisotropictetraceneislandsonthethirdand
rofiletakenatthewhitebar͑AB͒isshownat
thebottom,indicatingtheheightofϳ1.4nmforeachlayerand
suggestingthesecond,third,andfourthlayersasmarkedby2,3,
and4intheupperimage,rdinatesindicatethat
wmarksastep-edge
nucleationoccurringonathirdlayerisland.
isconcludedthatagrowthmodechangehasoccurredbe-
tweenthesecoveragestages.
Inmostcases,theorthogonalbrancheddendrites͑i.e.,the
crosslikeislandsinFigs.5and6͒appeartohavetheirtwo
orthogonalbranchesorientedalongthesubstratedomaindi-
rections͑Fig.6͒,i.e.,alongsubstrate͓110͔and͓−110͔direc-
tions,,somedendriticislandsrotatedap-
proximately45°inazimuthangleawayfromthesubstrate
latticedirectionsarealsoobserved,asshowninthemiddle
ndenttowhichwaythedendriticis-
landsareorientedwithrespecttothesubstratelattice,they
alwayshavetheirtwomainbranchaxesappearingmutually
ructurecharacterforthedendritesisnot
onlyconsistentwithwhatwehavediscussedthatthesethird
layerislandsarehighlycrystallized,butalsoindicatingthat
theirformationismainlydrivenbymolecularself-
tthatthemajorityofthesesurfaceis-
landsfollowthesubstratelatticeorientations͑Fig.6͒sug-
geststheexistenceofanon-negligibleinfluenceofthe
substratelatticeinthefilmnucleationandgrowth,presum-
ablythecommensurateregistrationismoreenergeticallyfa-
vorable.
Thetwoapparentlyorthogonalorientationsofthe2Dden-
dritesshownonthethirdlayerofthefilmarebelievedtobe
theherringbonelattice͓010͔and͓100͔directions͑i.e.,along
thedirectionsofbaxisandaaxis,respectively,inFig.1͒.
Theoreticalresultsonpentacenecrystalshowthatthemo-
lecularbindingenergies͑E
b
͒atthein-planefacetsareinthe
followingrelation:
7
E
b
͑010͒ϾE
b
͑100͒ϾE
b
͑otherfacets͒.
Thecorrespondinggrowthvelocitiesofthe͑010͒and͑100͒
stepsarethusrelativelyhigherthantheotherfacetsteps,
7
i.e.,thegrowthprobabilityalongthebaxisisthehighestand
theaaxisthesecondhighest͓seeFig.1͑b͔͒.Ifasimilar
bindingenergyrelationisapplicabletothecaseoftetracene
duetothestructuralsimilaritybetweenthetwopolyacenes,
thenthepreferredislandbranchdevelopmentsobserved͑Fig.
5͒canbeexplainedbytherelativelyhighergrowthprobabil-
ityalongthebaxisandaaxis͑whichareclosetoorthogonal
toeachother͒,withthelongerdimensionbeingalongtheb
axis.
B.X-rayabsorptionspectroscopy(NEXAFS)
Toexaminetheinteriorstructureofthefilmandhowit
evolveswiththefilmmorphologychangediscussedabove,
polarizationdependentcarbon1snearedgex-rayabsorption
finestructure͑NEXAFS͒͑Ref.23͒
thisapplicationtheC1s→
*
photoionizationresonancein-
tensity͑I
*
͒ofthecarbonatomsinthesampleismeasured,
whichvarieswiththerelativeorientationbetweenthepolar-
izationoftheincomingx-rayphoton
andthetransition
dipolemoment͑P͒ofthemoleculesfollowingtherelation-
shipI
*
ϰ͉
·P͉
2
.Theorientationoftransitiondipolemoment
205326-5
ALREVIEWB74,205326͑2006͒
thefisconfirmedbyour
NEXAFSmeasurements.
26
Inthissimplifiedhighsymmetry
case,onlytwoNEXAFSmeasurementsatdifferentx-ray
incidentangles͑
͒areneeded
22
fordeterminingtheaverage
moleculetiltingangle͑
␣
inFig.7͒.Theresonanceintensity
cannowbedescribedbythefollowingexpression:
I
*
͑
,
␣
͒ϰ
1
p
1+
͑3cos
2
−1͒͑3cos
2
␣
−1͒
2
3
+
1−p
sin
2
␣
,
2
ͫͬ
͑1͒
ticviewoftheset-upgeometryfortheNEXAFS
enemoleculeisrepresentedbytherectangular
lebetweenthemoleculartransitiondipolemo-
ment͑P͒͑orientednormaltotheplaneofaromaticrings͒andthe
substratesurfacenormal͑Z͒isthetiltingangle
␣
measuredby
NEXAFS.X-rayincidenceangle͑
͒withrespecttothesubstrate
surfaceisadjustedbyrotatingaroundR͑x-raydirectionisstation-
aryinexperiment͒.Thelinearpolarizationdirectionofthexrayis
indicatedbythevector
.
Pforthe
*
statesofthearomaticringsisalongthenormal
orebymeasuringI
*
atdiffer-
entx-raypolarizations͑varying
͒theorientationofPand
hencethatofthemoleculewithrespecttothesubstratecan
urrentcasethemolecularorientation
obtainedrepresentsanaverageoverallthetetracenemol-
eculelayers.
Theangularrelationshipsamongthevariousquantities
involvedintheNEXAFSexperimentareillustratedinFig.7.
Forx-raysincidentalongthesurfacenormal͑
=90°͒,an
uprightstandingmoleculesuchastheoneschematically
showninFig.7wouldyieldstrong
*
resonances,whilefor
grazing-incidencexrays͑
=10°͒the
*
resonanceintensity
attheangle
␣
inFig.7isthe
polarangleofPrelativetothesurfacenormalbutthereare
twowaysthemolecularplanecanbeorientedtoproduceit:
,asthecaseillustrated
inFig.7;orwhenthemoleculelongaxisliesintheplane
ude
thelattercasebecausetheSTMresultsshowninFig.4and
theAFMthicknessestimates͑Figs.3and5͒clearlyindicate
thatthroughallthegrowthstagesthemoleculesareina
ore,thebiggertiltingangle
␣
resultedfromNEXAFSmeasurementsindicatesmoreup-
rightstandingorientation.
Ingeneral,theresonanceintensityI
*
mayalsodepend
ontheazimuthorientationofthedipoletransitionmoment
rwhenthe
substratelatticepossessesathreefoldorhigherorderofsym-
metry,theazimuthdependenceofI
*
vanishes.
23
Con-
sideringthattheH/Si͑100͒-2ϫ1substratepossessestwode-
generatereconstructiondomains͑2ϫ1and1ϫ2͒orthogonal
toeachother,underthemacroscopicsamplingareacovered
byx-raybeam,thesubstratesurfacewouldbehaveasifthere
isa2ϫ2͑fourfold͒oreinourcasethe
NEXAFSofthetetracenefilmsshouldbeindependentto
wherep=͉E
ʈ
͉
2
/͉͑E
ʈ
͉
2
+͉E
Ќ
͉
2
͒isthedegreeoflinearpolariza-
tionintheplaneofthesynchrotronstorageringelectron
beamorbitandE
ʈ
andE
Ќ
aretheprojectionsofthesynchro-
tronx-rayinandoutofelectronorbitplane,
radiationfromaplanarundulatorasthecaseinthisstudy,the
polarizationisalwayslinearifobservedinthesamehorizon-
talplaneoftheinsertiondevicecenter.
27
Whenconsidering
variousfactors,theestimateduncertaintyof
usingthecur-
rentCLSSGMbeamlinesetupis±3°,
26
sothedegreeof
linearpolarizationpisestimatedtobeintherangeof97%to
100%.Theresultsonusingeither100%or97%forpdiffer
lessthan2°andthisuncertaintywillbeincludedinthefinal
␣
angleerrorbartobereportedbelow.
Figure8showsthetypicalNEXAFSdataforthethree
tetracenefilmthicknesses,withbeamatnormalincidence
strongcontrastinthe
*
resonanceintensityfromthetwo
beampolarizationsindicatesthatallthefilmsofdifferent
thicknessespossessahighdegreeofmolecularorientation
rallspectralfeaturesinFig.8areconsistent
withtheresultspreviouslyreportedbyYokoyamaetal.
28
for
thicktetracenefilmmeasuredatthemagicangle,butwith
moredetailresolvedbelowtheionizationpotential͑IP͒
aroundϳongestresonancepeakat285.7eV,
whichhasbeengenerallyassignedasaC1sto
*
-orbitals
resonanceinpolyacenes,
29,30
hasitsenergylocationandin-
tensityunchangedthroughthefilmthicknessesmeasured.
Thisisactuallythecasefortheotherresolvedfeaturesbelow
IPaswell.
31
Thereforechemicallythemoleculesinallthe
filmsaresimilartoeachother,whichisconsistentwiththe
expectedchemicallyweakinfluenceofthefilm-substratein-
terfaceinteraction.
Quantitativeassessmentsonthemolecularorientationre-
quiremolecularorbitalidentificationsofobservedresonance
ticalstudybyĂgrenetal.
29
has
shownthatthediscreteresonancefeaturesintetracene
NEXAFSbelowtheionizationpotentialconsistpredomi-
nantlyinthesplitsingle
*
statesoftheexcitedcarbonat-
eadingofthe
*
resonancehasbeenmainly
attributedtoenergyandintensityvariationoftheresonance
causedbythecore-holeinteractioneffect͑finalstateeffect͒,
andinadditiontothesite-dependentcoreionizationenergy
͑initialstateeffect͒.
29,30
SimilarconclusionasthatofĂgren
chedinarecentNEXAFSstudyofepitaxial
growthpentacenefilmsonCu͑110͒surfacebySöhnchenet
al.,
32
wherethediscreteresonancefeaturesbelowtheioniza-
tionpotentialwerefoundtohaveanalmostpure
*
charac-
205326-6
STRUCTUREOFTETRACENEFILMSONHYDROGEN-…PHYSICALREVIEWB74,205326͑2006͒
suredaveragemoleculetiltingangle͑
␣
͒asa
functionofthefiesegmentslinkingthepoints
areonlyforvisualaidpurpose.
onthiscurvewithanexperimentallymeasuredresonance
intensityratiothecorrespondingangle
␣
-
titativeanalysisofthedatainFig.8leadstotheresultsof
␣
varyingasthefilmthickness,whichissummarizedinTable
IandplottedinFig.9.
SIONS
K-edgeNEXAFSdatafortetracenefilmson
H/Si͑001͒.Thefilmthicknessesareasmarkedinthefi
datawithxrayatnormalincidence͑
=90°͒andgrazing-incidence
͑
=10°͒areshownbythesolidlinesanddottedlines,respectively.
Datafor3MLand15MLareshiftedverticallyforclarity.
ntheseresults,wetreatalltheresonancefeatures
belowIPinFig.8asdueto
*
contributions͑I
*
͒,andthe
insignificantintensitywith
*
characterfromthetetracene
endatoms
29
inthisspectralregionisneglected.
26
Withthese
spectralassignments,theclearpolarizationdependenceof
the
*
statesinFig.8indicatesthatthemoleculesinthese
fiaunder-
neaththe
*
resonanceswasintegratedfrom
284.2eVto291.0eVtoobtainthemeasuredresonancein-
tensitiesatthetwopolarizationanglesandhencetheexperi-
mentalI
*
͑
=10°͒/I
*
͑
=90°͒ratios͑TableI͒.Usingthe
expression͑1͒,thetheoreticalI
*
͑
=10°͒/I
*
͑
=90°͒ratio
asafunctionofmolecularorientationangle
␣
isplotted,and
inationoftheaveragemoleculetiltingangle
͑
␣
͒betweenthemoleculartransitiondipolemomentandthesub-
stratenormal.
Experimental
I͑
=10°͒/I͑
=90°͒
13.9%
20.6%
46.7%
Thickness͑ML͒
15ML
3ML
1.2ML
␣
78°±4°
74°±4°
65°±3°
Someinsightsaboutthestructuralevolutioninthetet-
racenefilmgrowthonH/Si͑100͒-2ϫ1boreoutbycompar-
,the
laterallatticeorientationanddimensionsgivenbySTM,the
interlayerseparationormonolayerheightandthemorphol-
ogymeasuredbyAFM,andthemoleculartiltinganglesasa
functionofthefilmthicknessbyNEXAFS.
Forbulktetracenecrystal,theunitcelloftheherringbone
-
specttotheabplanenormal,thesetwomoleculeshavetheir
molecularplanenormalorientedatanglesof81.9°and
70.1°,respectively.
4
Therefore,theaveragetiltingangleof
thetwomolecular-planenormalsis76°forthebulktetracene
crystal.
33
Inotherwords,ifmeasuredbyNEXAFS,theav-
eragetiltingangle͑
␣
͒forthebulkcasewouldbe76°.
TheNEXAFSdataclearlyindicatethatthemeasured
␣
of
thetetracenefilmchangeswithincreasingthickness͑TableI
andFig.9͒.Forthe1.2MLfilm,theaveragetiltingangleis
65°±3°,wellbelowthebulkcase͑76°͒.Consideringthe
smallerheight͑ϳ1nm͒obtainedfromAFMfortheuncov-
eredfirstmonolayerandthecorrespondingresultofnonor-
deredstructuresimagedfromSTM,itisnosurprisethatthe
filmexhibitsadifferentmoleculartiltinganglefromthatof
ainedlowertiltinganglein
conjunctionwiththeAFMandSTMdatasuggeststhatthe
filmissignificantlydisorderedwithanaveragemolecular
densitylowerthanthatinthebulkcrystal.
At3MLnominalcoverage,NEXAFSresultsindicatethat
theaveragetiltinganglehasincreasedsignificantlyto
74°±4°,AFMalso
indicatesignificantstructuralchangesatthisfilmthickness:
themolecularlyresolvedSTMimagesexhibitorderedsur-
facestructureswithcommensuraterelationstothesubstrate
205326-7
ALREVIEWB74,205326͑2006͒
lattice;andtheAFMimagesillustratedrasticchangesinthe
filmmorphologyandaunifiedlengthforthemonolayer
eve
thattheseresultsfromdifferenttechniquesmustbeorigi-
-
tributethesignificantincreaseofmoleculetiltingangleat3
MLasduetotheformationoftheextendedepitaxialdo-
mains͑Fig.4andtheanisotropicislandsonandabovethe
thirdlayerinFig.5͒.EventhoughtheSTMimagingmostly
showsthelatticesymmetryofthetoplayerofthefilm,judg-
ingfromtheabsenceofanyadditionalcontrastmodulation
intheSTMimaging,thedifferenceinlatticesymmetrybe-
addition,theessentiallysamelayerheightforeachlayerin
themultilayerislandsshownbyAFM͑Fig.5͒indicatesa
verticalcrystallineuniformityamongthelayers,including
thefirstmonolayerattheinterface,whichisconsistentwith
ourconjecturethattheherringbonelikecrystallinesymmetry
inFig.4hasbeenconfiguredthroughallthelayersforming
ingthelatticeconstantsbe-
tweenabulktetracenecrystal͑a=7.90Å͒andthesilicon
substrate͑dimerrowspacing=7.68Å͒,alaterallycompres-
sivefi-
ently,inalaterallycompressedepitaxialdomainthemol-
eculeswouldstandmoreuprightthaninthebulkto
t
thattheaveragetitlingangleforthewholefilmfrom
NEXAFSisaboutthebulkvaluewouldrequiresomemol-
eculesinthefiects
maybeaccountable:͑1͒Theareaswhereonlytwomonolay-
erspresentinFig.5arelikelythemodesttiltinganglere-
gions,astheorderedstructureswerenotobtainedfromour
STMmeasurementsontopofasecondlayer;͑2͒fromthe
filmmorphologyshowninFigs.5and6thereareterraced
islandsuptosevenlayersabovetheinterfacewherethetilt-
inganglefortheupperlayermoleculesareexpected,lower,
asthefilmlatticeisanticipatedtobegraduallyrelaxedalong
thedistanceawayfromtheinterface.
Itappearsthatthereisastructuralphasetransitionasso-
ciatedwiththefitiontothepresented
data,wenoticethatthehighlycrystallizedislands͑i.e.,the
apparentepitaxialdomains͒emergewiththethirdlayerfor-
mationonthesurfacefromourAFMmeasurements.
34
The
speculatethatwiththeincreasingcoveragemoremolecules
maysqueezeintothelessdenselypackedfirstandsecond
layers;thedensificationofthelayerswouldenhancethein-
tralayermolecularinteractionandleadtoarearrangementon
thepackingandorientationtowardsthebulkconfiguration,
andtheinfluenceofthesubstratelatticeremainssomewhat
effective,thereforeresultingintheapparentepitaxialdo-
rfilmcoverage-dependentrearrange-
mentofmoleculeswasreportedforphysisorbedbenzeneon
Ru͑001͒surface,
3,35
wheretheinitiallyparallelorientedfirst
physisorbedlayer͑abovetheparallelorientedfirstchemi-
sorbedlayeronthecleanRusurface͒wasfoundtorearrange
intoamorecrowdedlayerwithahighmoleculartiltangleat
highercoverages͑ജ1ML͒.
35
Inthegrowthoftetraceneon
H/Si͑001͒inthiswork,theeffectoftheproposedmolecule
rearrangementandreorientationissignificantatabout3ML,
andwebelievethattheapparentepitaxialdomains͑Fig.4͒
eticsand
thedrivingforceofthestructuretransitionrequirefurther
investigations
Afterthedrastictiltinganglechangeat3ML͑Fig.9͒,a
newtypeofgrowthtemplateappearsonthefilmsurface.
Comparingtothefastincreaseofthemoleculetiltingangle
from1.2MLto3ML,thefurthergrowthupto15ML
introducesaninsignificantincreaseinthemoleculetilting
angle͑Fig.9͒.Thesmallaveragetiltingangleincrease,if
meaningful,islikelyrelatedtotheexistenceofnonepitaxial
regionsat3MLwhicharetransformedtotheepitaxialdo-
atboth3MLand15ML
theaveragetiltingangles͑TableI͒arebasicallyinagreement
withthatoftheaveragebulkvalueof76°.
SIONS
ThestructureoftetracenefilmsonH-terminatedSi͑001͒,
obtainedundertheoptimizedlayer-by-layergrowth
process,
14
hasbeeninvestigatedbydifferentstructural
probes͑STM,AFM,NEXAFS͒.Allthefilmsinvestigated
exhibittetracenemoleculesinuprightstandinggeometryon
hefilmgrowthcondition,thelateral
packingforthemoleculesintheinitialfilmislargelydisor-
creasingthefilmcoveragetoaround3ML,a
structuralphasetransitionoccurswhichleadstotheforma-
tionofapparentepitaxialdomainswithacommensurate
abruptincreaseinthemoleculartiltingangleinthefilm
whenapproaching3MLcoverage͑NEXAFS͒andfromthe
compressivenatureofthelateralfilmlattice͑STM͒,itis
suggestedthatthemoleculesintheepitaxialdomainscould
betiltingmoreuprightthaninthecorrespondingbulkcase.
Forthegrowthbeyond3ML,theaveragemoleculetilting
anglelevelsaroundthebulkvalue.
ACKNOWLEDGMENTS
entruberfor
valuablediscussionsandhelpinsettingupourSTMcontrol
rforpermittingouraccesstohis
iketothank
TomRegierandTomKoztzerforassistanceinNEXAFS
rkwassup-
portedbytheNaturalScienceandEngineeringResearch
CouncilofCanada͑NSERC͒,andbytheCanadaFoundation
forInnovation͑CFI͒andtheOntarioInnovationTrust͑OIT͒.
TheoperationoftheCLSissupportedbyanNSERCMFA
grant.
205326-8
STRUCTUREOFTETRACENEFILMSONHYDROGEN-…PHYSICALREVIEWB74,205326͑2006͒
20
Under
*
ddress:xqin@
t,.͑Washington,D.C.͒97,1793͑1997͒.
2
ber,SolidiA201,1037͑2004͒.
3
ndCh.Wöll,.19,1889͑2004͒.
4
son,ActaCrystallogr.15,289
͑1962͒;son,ir,r,ibid.14,
697͑1961͒.
5
ch,s,,n,Appl.
.80,2925͑2002͒.
6
,,,,hel,andH.
vonSeggern,.91,157406͑2003͒.
7
up,,,.B66,
121404͑R͒͑2002͒.
8
k,l,ns,n,andM.S.
Deleuze,.B68,195409͑2003͒.
9
a,o,i,,,-
carini,i,ns,i,.
Mater.15,375͑2005͒.
10
,ori,a,o,i,
.B246,101͑2006͒.
11
F.-uHeringdorf,,,Na-
ture͑London͒412,517͑2001͒.
12
,,,n,d,A.
Kahn,,.B67,125406͑2003͒.
13
nk,kus,,andCh.Wöll,.
Lett.85,398͑2004͒;,S.Söhnchen,,andCh.
Wöll,ChemPhysChem5,266͑2004͒.
14
,.B73,121303͑R͒͑2006͒.
15
tz,n,r,,andR.
,.122,8529͑2000͒.
16
y,.B59,7293͑1999͒.
17
,.67,1539͑1991͒;-
nol.A10,2458͑1992͒.
18
,ki,uHeringdorf,i,
,.95,256106-1͑2005͒.
19
͑unpublished͒.
1
thesameatomichydrogendosingconditionsbutatlower
substratetemperature,local3ϫ1domainswereobservedonthe
surface,indicatingthatthedosingconditionsaresuitabletogen-
eratemonohydridesurfaceattheelevatedtemperatureapplied
͓,.B53,11100
͑1996͔͒.
21
entruber,.76,459͑1996͒.
22
WSxM©;
23
öhr,NEXAFSSpectroscopy,SurfaceScienceSeries
͑Springer,2003͒,SecondPrinting.
24
,.
Phenom.34,363͑1984͒.
25

,,ski,ler,andCh.Wöll,
.116,7704͑2002͒.
26
tal.͑unpublished͒.
27
ms,SynchrotronRadiationSources,in
VacuumUltravioletSpectroscopyI,and
͑AcademicPress,NewYork,1998͒.
28
ma,,da,ru,,
.41,189͑1990͒.
29
H.Ăgren,s,etta,.196,47
͑1995͒.
30
,oto,,,,,T.
Yokoyama,,,.109,10409
͑1998͒.
31
Note:Forthe1.2MLgrazingangledatainFig.8,thepeak
featureneartheonsetoftheresonances͑ϳ283.5eV͒islikely
duetotheimperfectionofthebackgroundcorrectionscheme,
notarealspectralfeature.
32
S.Söhnchen,,,.121,525
͑2004͒.
33
Itshouldbenotedthatfortetracenetheaveragetiltinganglein
NEXAFSisrelatedtobutdifferentfromtheanglebetweenthe
moleculelongaxisandthesubstratesurfaceplane,thelatterfor
thebulktetracenewouldbeϳ68°.
34
,ni,͑unpublished͒.
35
,.105,3838͑1996͒.
205326-9
版权声明:本文标题:Structure of tetracene films on 内容由网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://www.roclinux.cn/p/1735499005a1672787.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论