admin 管理员组文章数量: 1086019
2024年12月29日发(作者:pyqt5gpl版本)
AnalBioanalChem(2013)405:9193–9205
DOI10.1007/s00216-013-7341-z
RESEARCHPAPER
Theuseoftrimethylsilylcyanidederivatization
forrobustandbroad-spectrumhigh-throughputgas
chromatography–massspectrometrybasedmetabolomics
BekzodKhakimov
&
MohammedSaddikMotawia
&
SørenBak
&
SørenBallingEngelsen
Received:22July2013/Revised:22August2013/Accepted:2September2013/Publishedonline:4October2013
#
Springer-VerlagBerlinHeidelberg2013
AbstractReproducibleandquantitativegaschromatography–
massspectrometry(GC-MS)-basedmetabolomicsanalysisof
complexbiologicalmixturesrequiresrobustandbroad-
evaluatedderivatizationof
complexmetabolitemixturesusingtrimethylsilylcyanide
(TMSCN)andthemostcommonlyusedsilylationreagentN-
methyl-N-(trimethylsilyl)trifluoroacetamide(MSTFA).Forthe
comparativeanalysis,twometabolitemixtures,astandard
complexmixtureof35metabolitescoveringarangeofamino
acids,carbohydrates,smallorganicacids,phenolicacids,fla-
vonoidsandtriterpenoids,andaphenolicextractofblueberry
fferentderivatizationmethods,(1)
directsilylationusingTMSCN,(2)methoximationfollowed
byTMSCN(M-TMSCN),(3)directsilylationusingMSTFA,
and(4)methoximationfollowedbyMSTFA(M-MSTFA)were
comparedintermsofmethodsensitivity,repeatability,and
ivatizationmethodswere
observedat13differentderivatizationtimes,5minto60h,for
utomatedsamplederivatiza-
tionandinjectionenabledexcellentrepeatabilityandprecise
ptimalsilylationtimes,peak
intensitiesof34outof35metabolitesofthestandardmixture
wereuptofivetimeshigherusingM-TMSCNcomparedwith
ectsilylationofthecomplexstandardmix-
ture,theTMSCNmethodwasupto54timesmoresensitive
rly,allthemetabolitesdetectedfromthe
blueberryextractshowedupto8.8timeshigherintensities
er,
TMSCN-basedsilylationshowedfewerartifactpeaks,robust
profiles,andhigherreactionspeedascomparedwithMSTFA.
Amethodrepeatabilitytestrevealedthefollowingrobustness
ofthefourmethods:TMSCN>M-TMSCN>M-MSTFA>
MSTFA.
KeywordsMetabolomics
.
Gaschromatography–mass
spectrometry
.
Trimethylsilylderivatization
.
Methoximation
.
Trimethylsilylcyanide
Abbreviations
BSABis(trimethylsilyl)acetamide
BSTFAN,O-Bis(trimethylsilyl)trifluoroacetamide
EIElectronimpact
HCNHydrogencyanide
MEOXMethoxiamine
M-MSTFAMethoximationfollowedbyMSTFA-based
silylation
M-TMSCNMethoximationfollowedbyTMSCN-based
silylation
MPSMulti-purposesampler
MSTFAN-methyl-
N-(trimethylsilyl)trifluoroacetamide
PARAFAC2ParallelFactorAnalysis2
PCAPrincipalcomponentanalysis
RIRetentionindex
ElectronicsupplementarymaterialTheonlineversionofthisarticle
(doi:10.1007/s00216-013-7341-z)containssupplementarymaterial,which
isavailabletoauthorizedusers.
ov
:
en
QualityandTechnology,DepartmentofFoodScience,
FacultyofScience,UniversityofCopenhagen,Rolighedsvej30,
FrederiksbergC,1958Copenhagen,Denmark
ov(*)
:
a
:
PlantBiochemistry,DepartmentofPlantandEnvironmental
Sciences,FacultyofScience,UniversityofCopenhagen,
Thorvaldsensvej40,FrederiksbergC,1871Copenhagen,Denmark
e-mail:bzo@
9194
TMCSTrimethylchlorosilane
TMSTrimethylsilyl
TMSCNTrimethylsilylcyanide
Introduction
Gaschromatography–massspectrometry(GC-MS)hasbe-
comeoneofthefavoriteanalyticalplatformsappliedin
metabolomicsbecauseofitshighreproducibilityandresolu-
tionpower[1–3].IncontrasttoNMRandLC-MS,GC-MS
analysisrequiresmetabolitestobethermallystableandvola-
rtheboilingpointofmetabolites
andincreasevolatilityforGC-MSanalysis,complexbiolog-
icalsamples,suchasplantandanimaltissueextractsandbio-
fluidsneedtobederivatizedbychemicalderivatizationto
tcommonlyused
derivatizationmethodinvolvesmethoximationfollowedby
silylation[4–6].Duringthemethoximationstep,metabolites
withcarbonyl(>C=O)functionalgroupreactwiththereagent
(20–40mgmL
−1
solutionsofO-methylhydroxylaminehy-
drochlorideinpyridine)andformoxime(>C=N–O–CH
3
)
derivatives[7–9].Themainpurposeofoximationistoform
thermallystablederivativesthatpreventcyclizationofreduc-
ingsugars,formationofketo-enoltautomersofaldehydesand
ketoneswithaprotonintheα-position,andtoprotectother
carbonylgroupcontainingmetabolitesfromdecarboxylation
[10–12].Silylationservestosubstituteactivehydrogenatoms
ofhydroxyl(−OH),carboxylicacid(−COOH),primaryand
secondaryamines(R′NH
2
,R′R″NH),andthiols(−SH)witha
trimethylsilyl(−Si(CH
3
)3)group[13].
InGC-MSmetabolomics,differentsilylationreagentshave
beenappliedandtheydifferbytheirreactivity,selectivity,side
reactions,andbyproducts[13–16].Theefficiencyandspeed
ofthesilylationreactiondependonreactiontemperature,
time,andphysicochemicalpropertiesofboththesilylation
ilylationreagents,N-meth-
yl-N-(trimethylsilyl)trifluoroacetamide(MSTFA)hasbecome
themostcommonlyappliedreagentbecauseofitshighreac-
l
studiesonGC-MSmethodoptimizationsuggesttheuseof
MSTFAaloneortogetherwith1%ofTMCSasacatalystfor
silylationofcomplexmixtures[5,17,18].Silylationreactions
arereversibleandhavebeenshowntoproceedviabimolecu-
larnucleophilicsubstitution(S
N
2-mechanism)atthesilicon
atom[19–22].
AssilylationfollowsaS
N
2-mechanism,thesilylationde-
pendsonconcentrationofboththeelectrophile(silylation
reagent)andthenucleophile(substrate).Besidesconcentra-
tion,reactiontime,andtemperature,silylationreactionyield
ovetal.
andratedependon(1)natureoftheleavinggroupofthe
silylationreagent,(2)chemistryofthesubstratethatreacts
withsilylationreagent,(3)stericeffects,(4)influenceof
solvents,and(5)eralsilylation
activityorderofthedifferentfunctionalgroupsisasfollows:
alcohols(primary>secondary>tertiary)>phenols>carboxylic
acids>thiols>amines(primary>secondary)>
ylationrateincreasesby
increasingtheaffinityofthesiliconatomtothenucleophile
inityofthe
siliconatomishighesttoanoxygenatom[23,24]and
trimethylsilylationreagentswithgoodleavinggroupsare
moreactiveinexchangingatrimethylsilylgroupwithan
activehydrogenatomorametalatom[19,25].Inaddition,
thenucleophilicattackbyasubstrateontheelectrophile
siliconatombecomeseasierwhenthecovalentbondbetween
thesiliconatomandtheleavinggroupisweakandeasily
dissociable[20,23].Solventsalsoinfluencetherateandthe
neisthemostlyused
solventduringmethoximationandsilylationreactions,andas
itisaweakbase,itcanincreasesilylationreactionrateby
scavengingactiveprotons(H
+
)-
cessibilityofthenucleophiliccenterofthesubstrateiscrucial,
andstudieshavedemonstratedaninfluenceofstericeffectsin
silylationofbranchedsecondaryaminesandprimaryamines
[26].Todate,themostthoroughlystudiedsilylationreagents
arethosewithaSi–Nbond,andsilylatedamidessuchasN,O-
bis(trimethylsilyl)acetamide,N,O-bis(trimethylsilyl)trifluoro
acetamide,andMSTFAhavebecomecommonsilylationre-
rast,veryfewstudieshave
beenconductedonsilylationcapabilitiesofcompoundswitha
Si–Cbond,suchastrimethylsilylcyanide(TMSCN).Two
recentreviewsonderivatizationreagentsandtheirreactions
usedforGC-MSanalysisofabroadrangeofmetabolites
discusstheadvantagesandlimitationsofavarietyofdifferent
derivatizationreagents[13,21].However,TMSCNwasnot
showthatTMSCNpossessesseveraladvantagesoverthe
majorityofthereagentsuseduptodate,includingahigh
silylationreactivityandreproducibility.
Inthepresentstudy,theuseofTMSCNforderivatization
nic
chemistry,TMSCNismainlyusedasasourceofcyanide
groupforvarioussyntheticreactions[27].AlthoughMai
andPatil[28]haveshownhighsilylationreactivityof
TMSCNtowardmanyfunctionalgroups,itspotentialasa
derivatizationreagentincomprehensiveGC-MSanalysisof
onlypublished,toourknowledge,exampleoftheuseof
TMSCNforGC-MSanalysiswaspublishedintheearly
1990s,whereitwasusedforthederivatizationofthe
Theuseoftrimethylsilylcyanidederivatization
prostacyclinanalogI[29].Inthisstudy,wecomparedGC-MS
analysisofvariousclassesofcompoundssilylatedbyusing
TMSCNandMSTFA.
MaiandPatil[28]haveconductedacomprehensivestudy
onsilylationofalcohols,phenols,carboxylicacids,amines,
tudy,theyshowedthat
TMSCNoutperformedmanyotherreagentsandprovided
dyshowedthatunder
mildconditions:5minat25°Cformostofalcohols,phenols,
andcarboxylicacidsand5–30minat25–100°Cforsecond-
aryamines,thiols,andcarbohydrates,TMSCN-based
silylationreactionyieldreachedupto98%.Thestudyillus-
tratedhighersilylationefficiencyandthereactionrateof
TMSCNwhencomparedwithotheralkylcyanidederivatiza-
tionreagentstowardsstericallyhinderedfunctionalgroups
tion,they
showedhighsilylationreactionyieldwithneat(solventfree)
TMSCNcomparedwiththeuseofsolventsinceallmetabolites
werereadilysolubleandratherneutralpHofTMSCNenables
non-destructivesilylationofbasesensitivecompounds.
Byproductformationisoneofthelimitationsofmost
uctsareformedduringthe
silylationreactionsandmayresultinformationofmultiple
artifactpeaksthatdecreaseprofilereproducibility,hamperthe
detectionofearlyelutingmetabolites,anddegradationof
mple,oneofthemostcommonly
usedsilylationreagentinconjunctionwithMSTFAisTMCS
thatformhydrogenchlorideasabyproduct,whichisan
encyanide
(HCN)istheonlybyproductformedinTMSCN-based
ooweakanacidtohydrolyzetheTMS-
derivatizedproducts,butbycontrast,itcanprotonateTMSCN
thatleadtoincreasedelectrophilicityandthusservestofurther
increasesilylationefficiency.
Thepurposeofthisstudyistoassessthesilylationcapa-
bilitiesofTMSCNtowardsvariousclassesofmetabolitesthat
areoftendetectedinGC-MSmetabolomicstudiesofcomplex
biologicalsamples,andtocomparewiththesilylationeffi-
abolite
mixtures,astandardmixturethatcompiled35differentcom-
poundsincludingaminoacids,carbohydrates,smallorganic
acids,phenolicacids,flavonoidsandtriterpenoids,anda
phenolicextractofblueberryfruitswereusedtoevaluatethe
nd
MSTFAsilylationperformanceswereevaluatedinconjunc-
tionswithamethoximationstep(usingpyrimidineasasol-
vent)andwithoutmethoximation(directsilylation)where
fferentderiv-
atizationmethods:(1)directsilylationusingTMSCN,(2)
methoximationfollowedbyTMSCN(M-TMSCN),(3)direct
silylationusingMSTFA,and(4)methoximationfollowedby
9195
MSTFA(M-MSTFA)wereevaluatedat11–13different
silylationtimepointsintherangeof5minto60h.
Materialsandmethods
Preparationofmetabolitestandardmixtureandextraction
ofblueberryfruits
Individualsolutionsof35standardcompoundscontaining6
aminoacids(valine,serine,threonine,glycine,aspartic
acid,andphenylalanine),6carbohydrates(ribitol,ribose,glu-
cose,glucose-6-phosphate,maltose,andsucrose),13organic
acidsandphenoliccompounds(benzoicacid,succinicacid,
malicacid,palmiticacid,phenyllacticacid,4-hydroxybenzoic
acid,2-hydroxy-2-methoxibenzoicacid,vanillicacid,2-
hydroxycinnamicacid,p-coumaricacid,caffeicacid,4-
hydroxiacetophenone,andvanillin),2polyphenols(naringenin
andcatechin),and8triterpenes(cholesterol,β-amyrin,α-
amyrin,lupeol,oleanolicacid,hederagenin,betulinicacid,and
α-epoxi-β-amyrin)werepreparedintheconcentrationof2or
0.25mgmL
−1
(onlyfortriterpenes).Mostofthestandard
compoundsweresolubleinwater,apartfrompolyphenols,
caffeicacid,benzoicacid,2-hydroxy-3-methoxybenzoicacid,
palmiticacid,andtriterpeneswhichweresolubilizedindimethyl
icacid,p-coumaricacidandcholesterolwere
solubilizedin96%olitestandardmixturewas
preparedbycombining200-μLaliquotsofallthesolutionsof
standardcompounds,besidessolutionsoftriterpenes,which
wereaddedindoubleamount(400μL).Thisstandardmixture
icandorganicacids
ofblueberryfruitswereextractedessentiallyaccordingtothe
protocoldescribedbyZadernowskietal.[30].Toincreasethe
extractionyield,slightmodificationswereintroducedtothe
rryfruitsoflow-bushblueberry(Vaccinium
myrtillus)werepurchasedfromthegroceryshopIrma(Copen-
hagen,Denmark);100goffrozenblueberryfruitswereextracted
fivetimeswith100mLof80%(vol/vol)methanolatroom
temperaturefor40minbyusinganorbitalshakerat500rpm.
Theextractswerecentrifugedat3,000×gfor5min,andtheclear
supernatantscombinedin1,000mLroundbottomflaskand
driedusingarotaryvacuumevaporatorfollowedbyfreeze-
drying;1.5goffreeze-driedextractwasdissolvedin100mL
of4Msodiumhydroxide,hydrolyzedunderthenitrogengas
atmospherefor4hatroomtemperaturewhilemixingat300rpm
esolutionwasacidifiedwith
6MhydrochloricacidtopH2,andextractedfivetimeswith
diethylether(1:1,vol/vol)for15minwhilemixingat300rpm
ntheetherextractfromfatty
acidsandothernonpolarcompounds,thecombinedetherfrac-
tionsweredriedusingrotaryvacuumevaporator,re-dissolvedin
9196
150mLof5%(wt/vol)sodiumbicarbonatesolution,andthen
remainingwaterphasewasacidifiedwith6Mhydrochloricacid
topH2,extractedfivetimeswithdiethylether,thecombined
etherfractionsdriedfinallyre-dissolvedin17mLof80%(vol/
vol)ultingextractreferredasphenolicextract
Amainlycontainsfreephenolicandorganicacidsaswellas
blueberryphenolicextractBwasobtainedinessentialthesame
wayasphenolicextractA,exceptthathydrolysisof1.5gof
freeze-driedextractwasperformedusing100mLof2M
hydrochloricacidandstirringfor40minat94°the
freephenolicacids,organicacids,andphenolicacidsderived
fromhydrolysisofesterbonds,thisextractalsocontainthe
phenolicacidsderivedfromthehydrolysisofglycosidicbonds.
Chemicals
Allthecompoundsusedforpreparationofstandardmixture
andsolventswerepurchasedfromSigma-Aldrich,exceptfor
4-hydroxiacetophenone,hydrochloricacid(37%),andsodi-
umbicarbonatethatwereobtainedfromMerck,inbestavail-
ylsulfoxide,diethylether,2-hydroxy-3-
methoxybenzoicacid,trimethylsilylcyanideandN-methyl-
N-(trimethylsilyl)trifluoroacetamidewerepurchasedfrom
penoid12α,13α-epoxy-
3β-a.
Waterusedthroughoutthestudywaspurifiedusinga
MilliporeMilli-Qlabwatersystemequippedwith0.35μm
filermembrane.
Samplederivatization
Derivatizationandinjectionofsampleswasfullyautomated
byuseofaGERSTELMultiPurposeSampler(MPS)with
DualRaitWorkStationintegratedtoaGC-MSsystemfrom
enabledreproduciblesamplederivatization
inahigh-throughputmannerandwasfullyoperatedbyMAE-
STROsoftwareintegratedwithAgilent'sChemStationsoft-
abledautomationofindividualandparallel
samplederivatizationstepsfromasinglesequencedeveloped
fortheanalysisofseveralsamplesindependentlyfromchro-
matographicsystemandprovidedprecisederivatizationtime
esofsyringeswereinstalled,
theleftMPSwasequippedwitha10-μLsyringeandused
onlyforGC-MSinjection,whereastherightMPSwas
equippedwitha100-μLsyringeandusedinsamplederivati-
oderivatization,100-μLaliquotofthe
blueberryextractand70-μLaliquotofstandardmixturesam-
pleswerelyophilizedin150-μLglassinsertsunderreduced
pressureatroomtemperaturebyuseofavacuumcentrifuge,
transferredinto1.5mLGC-MSvials,andsealedwithmag-
neticcapswithsiliconeseptumundernitrogengastoprevent
ovetal.
magneticcaps(ML33032Afrom
)withsiliconseptumenabledMPSto
moveGC-MSvialsandpreventedsolventand/orreagent
evaporationduringthederivatizationevenafterpenetration
lizedandsealedsam-
pleswereplacedonaMPSsampletrayandfurthersample
handlingwasfullyautomated.
Methoximationofsampleswasperformedbyadditionof
40μLfreshlyprepared20mgmL
−1
methoxiaminehydro-
chloride(CH
3
ONH
2
·HCl)inpyridineandincubatedfor
90minat30°ethoximation,
samplesweresilylatedbyadditionof40μLsilylationreagent,
andatotalof80μLreactionmixturewasincubatedat37°C
thevolumeofthereaction
mixtureconstantinallfourderivatizationmethods,direct
silylationmethods,TMSCNandMSTFAwereperformedby
additionof80-μLpuresilylationreagentandincubatedat
37°nthereactionstoichi-
ometry,theamountofappliedsilylationreagentsexceededat
least400(TMSCN),200(M-TMSCN),250(MSTFA),and
125(M-MSTFA)timestheamountneededforsilylationofall
theavailableactivehydrogenatomspresentinthe70-μL
-MSprofilesofthestandard
mixturewasevaluatedat11differentsilylationtimesbyusing
allfourderivatizationmethods,whereasderivatizationof
blueberryextractwasperformedat13differentsilylation
timesbyusingthree(TMSCN,M-TMSCN,andM-MSTFA)
antpracticalconsiderationsof
theautomatedsamplederivatization,GC-MSanalysisare
describedindetailintheElectronicsupplementarymaterial
(ESM;text).
Dataacquisition
Analiquotof1.0μLderivatizedsamplewasinjectedeitherin
split(splitratioof3:1wasusedinblueberryextractanalysis)
orinsplitlessmode(foranalysisofstandardmixture)intoa
Gerstelcooledinjectionsystem(CIS)equippedwithaglass
edsettingsofleftandrightMPS
syringes,sampleincubatingagitator,andCISinjectionport
parameterscanbefoundintheESM(text).TheGC-MS
consistedofanAgilent7890AGCandanAgilent5975C
rationwasperformedonanAgilentHP-
5MScolumn(30m×250μm×0.25μm)byusinghydrogen
carriergasattheconstantflowrateof1.2mLmin
−1
.TheGC
oventemperatureprogramwasasfollows:initialtemperature,
60°C;equilibrationtime,1.0min;heatingrate,
12.0°Cmin
−1
;endtemperature,310°C;holdtime,6.0min;
andpost-runtime,5minat60°ectrawererecorded
intherange
1
of50–750m/zwithascanningfrequencyof2.3
scanss
−
,andtheMSdetectorwasswitchedoffduringthe3-
nsferline,ionsource,and
quadrupoletemperaturesweresetto280,230,and150°C,
Theuseoftrimethylsilylcyanidederivatization
sspectrometerwastunedaccordingtothe
manufacturerrecommendationsbyusingperfluorotributylamine.
Dataanalysis
RelativeabundancesofmetaboliteswerecalculatedbyParal-
lelFactorAnalysis2(PARAFAC2)modelingoftherawGC-
MSdata[31,32].Themethodallowedprecisequantification
ofwell-resolved,co-eluted,overlapped,andlowS/Nratio
peaksusingfullmassspectraormarkerm/zions(for
completelyembeddedpeaks)come
ofPARAFAC2modelswere(1)scoresofeachresolvedpeak
thatcorrespondtotherelativeareasofthedetectedpeaks,(2)
spectralloadingsofeachresolvedpeakwhichrepresentpure
massspectraofthedetectedpeaks,and(3)elutiontime
explorativeanalysisofthederivatizationmethods,principal
componentanalysis(PCA)[33]wasappliedtoamatrixcon-
tainingrelativeabundancesofdetectedmetabolites(variables)
indifferentderivatizationmethods(rows).Metaboliteswere
identifiedbasedontheirretentionindices(RI)andEI-MS
librarymatchusingcommercialWiley08andNIST05librar-
-MSlibrary
searchwasperformedusingoriginalmassspectraor
PARAFAC2resolvedmassspectraofchromatographicpeaks.
Retentionindicesofeachmetabolitewerecalculatedusingin-
houseMATLABfunctionbasedontheVandenDooland
Kratzequation[34]andretentiontimesofC10–C40alkanes
thatwereanalyzedusingthesameGC-MSmethod.
Software
GC-MSchromatographicdatawasanalyzedusingAgilent
TechnologiesChemStationsoftware(version:E.02.02.1431).
PARAFAC2andPCAmodelingwereperformedbyusing
PLSToolbox(Version6.0.1,EigenvectorResearchInc.
USA)workingunderMATLAB(Version7.13.0.564,
R2011b,theMathworksInc.,USA)es
ofrawGC-MSdatawereimportedintoMATLABusingthe
function[35].
Safetyconsiderations
Allderivatizationreagents(includingMSTFAandTMSCN)
ingly,derivatizationre-
agentsmustbehandledundertheinertgasatmosphereina
tentionmustbepaidtoavoidcontactwith
riateviallidsmustbetestedfor
theirabilitytosealthevialsandtopreventevaporationofthe
tizedsamplesand
reagentsmustberemovedfromtheautosamplershortlyafter
injectionandshouldbedisposedaccordingtotheinstructions
ustbeawareofthesafety
9197
precautions,preventmoisturethatcausesformationof
rthtomention
thatoneofthepossiblebyproductsoftheTMSCNishydro-
tizationmustbeperformedunderinertgas
ifmanualhandlingisnecessary,ifanautosamplerisemployed
tightlysealedvialsthatpreventevaporationofboth,there-
agentandbyproducts,shouldbeused,andfinallydisposaloff
leftoversilylationreagentandvialswithsilylatedsamples
tailed
safetyconsiderationsofusingTMSCNandMSTFAaswell
asreagentevaporationstestsaredescribedindetailinthe
ESM(text).
Resultsanddiscussion
Derivatizationmethodcomparisonofstandardmixture
Globalanalysis
TheGC-MSprofilesobtainedfromthefourderivatization
methodsdiffered,bothqualitativelyandquantitatively,and
optimalsilylationtimeofeachofthederivatizationmethod
wasdefinedasthetimeofincubationatwhichamaximum
numberofmetabolitesreachedtheirhighestpeakintensity.
Optimalsilylationtimesofthederivatizationmethodswereas
follows:TMSCN,40min;M-TMSCN,60min;MSTFA,
30min;andM-MSTFA,1illustratestotal
ionchromatogramsofthestandardmixtureattheoptimal
1lists41derivatives
thatoriginatedfrom35metabolitesofthestandardmixture
andtheirrelativeratiosattheoptimalsilylationtimeofeach
-
atizationproductsofallthe35compoundsusedinthestan-
dardmixture,usingboththemethoxiaminationfollowedby
trimethylsilylation(M-TMSCNandM-MSTFA)anddirect
trimethylsilylation(TMSCNandMSTFA)methods,are
highlightedintheESM,eatabilityofthe
derivatizationmethodswascalculatedfromtherelativestan-
darddeviationsofabundancesof41derivativesmeasuredin
fourreplicates,foreachderivatizationmethodattheiroptimal
nerrorsofthederivatizationmethods
TMSCN,M-TMSCN,MSTFA,andM-MSTFAwere3.8%
(varyingfrom1.2to10.1%forallmetabolites),6.4%(1.2to
17.8%),26.2%(7.7to41.6%),and13.9%(2.4to30.1%),
uatethesignificanceofthedifferences
observedinthefourdifferentderivatizationmethods,PCA
analysiswasperformedonthereplicatedatamatrix(16×41)
thatinclude16samples,4replicatespermethod,andabun-
uently,
ANOVAanalysiswasperformedtoevaluatethe
Fstatistics
(variationsbetweentreatments/variationswithintreatments)
9198
Fig.1Totalioncurrent
chromatogramsofGC-MSdata
obtainedfromthecomplex
standardmixtureusingthefour
differentderivatizationmethods
attheoptimalsilylationtimes.
Peaksarenumberedinthesame
orderaspresentedintheESM,
TableS1
ovetal.
Retention time (min)
andthepvaluesbyusingthescoresofPC1andPC2that
explainedmorethan75%S1(ESM)
showsthePC1versusPC2scoresplotofthePCAanalysis
andthecorrespondingboxplotoftheANOVAanalysis
ggestsrejectionofthe
nullhypothesis(p<0.01)with95%oftheconfidenceand
showsthesignificanceofthedifferencesobservedbetween
xploratoryevaluation
ofthefourdifferentderivatizationmethodsatdifferent
silylationtimepoints,twoPCAmodelsweredeveloped.
ThefirstPCAmodelwasdevelopedonaX(56×34)
metabolomicdatathatcompiled34metabolitesdetectedin
all56samples(fourderivatizationmethodsevaluatedatelev-
endifferentsilylationtimes,includingreplicatesattheoptimal
derivatizationtimes).ThescoresandloadingsplotofthePCA
1versusPC2scoresplot
ofthePCAmodelrevealapartialseparationofthederivati-
zationmethods(Fig.2a),wheresamplesofeachmethodform
itstrajectoryfromthelefttotherightoftheplotbyincreasing
sthatarelocatedtotheveryrightside
oftheplotrepresentthesilylationtimepointswhenTMS-
derivativesreachedtheirhighestintensities(optimalsilylation
time).AsPC1versusPC2loadingsplotofthemodelshow
thatallmetabolitesarelocatedintherightsideoftheplot
havingpositiveloadingsinPC1(Fig.2b).However,further
increaseofsilylationtimeresultedindecreaseofmetabolites'
intensities,thusafteroptimalsilylationtime,samplesare
the
optimalsilylationtimes,therelativeabundancesofmostofthe
metaboliteswerehigherwhenusingTMSCNandMSTFA
methodscomparedwithM-TMSCNandM-MSTFA,and
accordingly,theyshowedhigherscoresinPC1(Fig.2a).
Theloadingsplotalsoshowsapartialseparationofvariables
thatassistedtocomparedifferentderivatizationmethodsfor
detectionofvariousmetabolitesbyvisualobservationof
theorganicandphenolic
acidsareclusteredontheupperrightsideoftheplothaving
positiveloadingsinPC2,whiletriterpenesandmetabolites
,poly-
phenols,sucrose-8tms,ribitol-5tms,serine-3tms,glycine-
3tms,andthreonine-3tms)havenegativeloadingsinPC2
andthusformsclustersonthelowerrightsideoftheplot.A
Theuseoftrimethylsilylcyanidederivatization9199
Table1Trimethylsilyl(TMS)andmethoxime-trimethylsilyl(MEOX-TMS)derivativesderivedfrom35compoundsofstandardmixturesorted
accordingtotheirretentiontime
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
Substance
Valine-2TMS
Benzoicacid-1TMS
Serine-2TMS
Threonine-2TMS
Glycine-3TMS
Succinicacid-2TMS
Serine-3TMS
Threonine-3TMS
Asparticacid-2TMS
4-hydroxyacetophenone-1TMS
Malicacid-3TMS
Vanillin-1TMS
Phenylalanine-1TMS
Phenyllacticacid-2TMS
4-hydroxybenzoicacid-2TMS
Vanillin-MEOX-1TMS
2-hydroxy-3-methoxybenzoicacid-2TMS
(trans)-ribose-MEOX-4TMS
Ribitol-5TMS
Vanillicacid-2TMS
2-hydroxycinnamicacid-2TMS
(trans)-glucose-MEOX-5TMS
p-coumaricacid-2TMS
(cis)-glucose-MEOX-5TMS
Palmiticacid-1TMS
(trans)-caffeicacid-3TMS
(trans)-glucose-6-phosphate-MEOX-4TMS
(cis)-glucose-6-phosphate-MEOX-4TMS
Sucrose-8TMS
(trans)-maltose-MEOX-8TMS
(cis)-maltose-MEOX-8TMS
Naringenin-3TMS
d
Catechin-5TMS
Cholesterol-1TMS
β-amyrin-1TMS
α-amyrin-1TMS
Lupeol-1TMS
Oleanolicacid-2TMS
Betulinicacid-2TMS
α-epoxi-β-amyrin-1TMS
Hederagenin-3TMS
d
TMSCN
a
66.93(40)
3.50(50)
1.73(10)
0.49(20)
2.46(150)
2.18(40)
29.34(40)
12.86(50)
23.41(50)
3.94(40)
1.94(30)
0.42(150)
34.51(50)
1.83(50)
1.92(30)
No
5.36(40)
No
1.41(50)
4.48(50)
2.35(40)
No
4.23(40)
No
1.31(50)
2.31(30)
No
No
2.32(30)
No
No
7.85(40)
1.77(150)
2.17(40)
1.74(50)
2.04(50)
1.44(60)
1.50(40)
2.47(50)
4.02(50)
1.83(50)
M-TMSCN
a
4.56(60)
2.05(60)
1.66(40)
0.49(40)
1.37(30)
1.93(150)
1.10(40)
1(150)
2.07(150)
2.24(150)
1.59(150)
No
0.69(150)
1.55(150)
1.48(150)
2.23(60)
4.48(150)
3.01(60)
1.16(60)
2.23(150)
2.16(150)
2.97(60)
1.77(150)
3.62(60)
1.86(60)
1.52(150)
4.50(150)
3.62(150)
2.15(300)
4.51(300)
4.61(300)
2.86(150)
1.35(30)
2.33(150)
1.92(150)
2.07(150)
1.61(150)
2.07(150)
2.16(150)
3.43(60)
1.93(150)
MSTFA
a
37.55(30)
5.31(50)
26.27(10)
13.46(20)
1.86(20)
2.32(40)
0.54(40)
0.42(60)
21.88(40)
9.83(20)
2.25(50min)
1(30)
58.55(40)
2.04(20min)
3.43(40)
No
4.32(30)
No
1.35(20)
5.78(30)
7.62(30)
No
5.74(30)
No
1.80(30)
2.93(30)
No
No
1.60(30)
No
No
6.11(20)
1.14(30)
4.20(30)
1.81(30)
1.94(30)
1.11(50)
1.67(30)
2.04(40)
2.58(30)
1.29(50)
M-MSTFA
a
(150)
(150)
(30)
(60)
(150)
(300)
(60)
No
(150)
(150)
(300)
No
(150)
(150)
(150)
(300)
(150)
(150)
(150)
(150)
(150)
(150)
(300)
1(60)
(60)
(150)
(150)
(150)
(300)
(300)
(150)
(150)
(40)
(60)
(150)
(150)
(150)
(300)
(150)
(150)
(150)
RI
b
1,208
1,242
1,251
1,289
1,302
1,308
1,353
1,375
1,419
1,464
1,489
1,535
1,548
1,584
1,626
1,648
1,692
1,699
1,745
1,768
1,811
1,925
1,940
1,948
2,044
2,151
2,375
2,395
2,709
2,814
2,843
2,905
2,926
3,176
3,402
3,443
3,454
3,665
3,687
3,755
3,790
EI-MS
c
90
94
93
92
92
95
95
95
94
89
91
91
86
90
94
91
94
87
98
96
95
89
88
89
91
93
88
88
90
87
87
85
86
97
98
99
98
99
99
97
99
Nonopeakwasobserved
a
PARAFAC2-basedrelativeabundancesofderivativesattheiroptimalsilylationtimesinminutes(indicatedinthebrackets),foreachderivatization
methodareillustratedastheirratiototherelativeabundanceofthecorrespondingderivativesinmethodM-MSTFA
RetentionindicesofmetabolitederivativeswerecalculatedbasedonVandenDoolandKratzequationbyusingretentiontimesofC10–C40alkanes
EI-MS-basedlibrarymatchofthemetabolitesbyusingWiley08andNIST05
PARAFAC2-basedquantificationofderivativesincludedonlycharacteristicm/zionbutnotfullmassspectra
b
c
d
9200
Scores Plot
6
4
5 m
ovetal.
0.4
20 m
50 min
40 m
30m
Loadings Plot
(a)
10 m
(b)
0.3
0.2
0.1
0
-0.1
-0.2
serin_2tms
threonin_2tms
phenylalanine_1tms
aspartic acid_2tms
p-coumaric acid_2tms
cinnamic acid_2tms
aspartic acid_3tms
vanillic
malic acid_1tms
acid_2tms
valin_2tms
phenyllactic acid_2tms
cholesterol_1tms
succinic acid_2tms
naringenin_n tms
caffeic acid_3tms
P
C
2
(
1
5
%
)
2
0
-2
-4
-6
-10
60 m
150 m
r3_30 m
5 h
r2_30 m
30 h
15 h
5 m
5 m
20 m
10 m
5 m
10 m
30 h
30 m
20 m
15 h
30 m
r1_30 m
10 m
40m
5 h
r1_40 m
40 m
20 m
r3_60 m
r2_40 m
150 m
50 m
r3_40 m
15 h
60m
r1_60 m
30 h
30 h
5
50 m
150 m
30 m
r2_60 m
h
60 m
40 m
15 h
5 h
50 m
r1_60 m
150 m
r2_60 m
60m
r3_60 m
P
C
2
(
1
5
%
)
serin_3tms
threonin_3tms
catechin_n tms
ribitol_5tms
betulinic acid_2tms
epoxi-b-amyrin_1tms
glycine_3tms
lupeol_1tms
a-amyrin_1tms
palmitic acid_1tms
sucrose_8tms
hederagenin_3tms
oleanolic acid_2tms
-5
TMSCN
0
PC 1 (58%)
MSTFA
5
M-MSTFA
10
0.1
Amino acids
0.120.140.16
PC 1 (58%)
0.180.2
M-TMSCN
Triterpenes
Phenolic and Organic acids
Sucroseand ribitol
Naringenin and Catechin
Fig.2Scores(a)andloadings(b)plotsofPCAmodeldevelopedonamatrixcontainingPARAFAC2scores(relativeabundances)ofTMSderivativesof
thestandardmixturedetectedbyfourderivatizationmethods,at12differentsilylationtimepoints(includingfourreplicatesattheoptimalsilylationtimes)
visualobservationofscoresandloadingsplotsuggeststhat
detectionoftriterpenesandmetaboliteswithseveralex-
changeablehydrogensismoreefficientwhenusingTMSCN
y
beduetotherelativelysmallermolecularsizeoftheTMSCN
reagentthanMSTFA,whichenableamorerapidandefficient
silylationofstericallyhinderedexchangeablehydrogenatoms
ofsucrose(hydroxylgroupsatC2′),catechin,andaminoacids
(e.g.,glycine-3tmsandserine-3tms).Bycontrast,detectionof
someofthephenolicandorganicacidswasslightlymore
efficientwhenusingMSTFA,suggestingthatMSTFAsam-
comparethesilylationcapacityofTMSCNandMSTFAto-
wardsstericallyhinderedmetabolites2,6-diphenylphenolwas
owedarapid
heless,aconsiderable
TMSCNsilylation,amaximumintensityoftheTMS-product
wasobservedat5s,whereaswithMSTFA,amaximumwas
reachedafter5minandonlyreachedanintensityofabout
80%oftheTMSCNsignal(seeESM,Fig.S2).
ThescoresplotofthefirstPCAmodelalsoassistedin
evaluationofthederivatizationmethods'
sumsoftheinnerdistances(Euclideandistances)ofthefour
replicatestothecenterofaclusterthattheyformwerecalcu-
rameterprovided
-
clideandistancesofreplicatesofderivatizationmethodsin-
creasedinfollowingorder:TMSCN(1.2) TMSCNmethodwasthemostreproduciblewhileMSTFA servationwasinagreementwiththe repeatabilitytestofthemethodscalculatedbasedonthe relativestandarddeviationsofmetabolites. ThesecondPCAmodelcomparedM-TMSCNmethod withM-MSTFA(28samples)usingallcommonmetabolites includingmethoxime-trimethylsilylated(MEOX-TMS)deriv- ativesofreducingsugars(41variables).Thescoresplotofthis PCAmodel(seeESM,Fig.S3)showedbetterseparationof theM-TMSCNsamplesfromtheM-MSTFAsampleswhen plescorre- spondingtotheM-TMSCNmethodhadsignificantlyhigher scoresonthePC1thanM-MSTFAsamplesandshoweda generaltrendindevelopmentofderivatizationreactionsover dingsplotofthemodelalso showedhigherloadingsofallvariablesinPC1comparedwith esultssuggestthattheM-TMSCNmethod outperformedM-MSTFAintermsofsilylationreactionspeed, efficiency,andrepeatability. Derivatizationofsugars AcomparisonoftheM-TMSCNandM-MSTFAmethodsfor GC-MSdetectionofMEOX-TMSderivativesofreducing sugars,vanillinandtheTMS-derivativeofsucroseat bothmethods,therelativepeakabundancesofmetabolites increasegraduallytoreachtheirmaximumbetweena ptimalsilylationtime, abundancesofallmetaboliteswere1.5–6timeshigherinthe ingly, theM-TMSCNmethodoutperformedM-MSTFAinterms completenessandthesilylationreactionratesofmono-and disaccharides,includingthestericallyhinderedC2′hydroxyl Theuseoftrimethylsilylcyanidederivatization Fig.3Relativepeakabundances ofmethoximetrimethylsilyl derivatives(MEOX-TMS)of glucose,maltose,glucose-6- phosphate,ribose,vanillin,and TMSderivativeofsucroseinfour differentderivatizationmethods (TMSCN,M-TMSCN,MSTFA, andM-MSTFA)oversilylation timerangeof5minto30h. Relativepeakabundancesof TMSderivativeswerecalculated usingPARAFAC2modelingand ln(min)scaleofsilylationtime wasusedforbettervisualization x 10 3 2.5 7 9201 x 10 2 6 (a) P e a k a r e a (b) P e a k a r e a 2 1.5 1 0.5 0 1.5 1 0.5 0 234567 234567 Log(min) Glucose methoxime-5tms (M-TMSCN) Glucose methoxime-5tms (M-MSTFA) Maltose methoxime-8tms (M-TMSCN) Maltose methoxime-8tms (M-MSTFA) Sucrose-8tms (M-TMSCN) Sucrose-8tms (M-MSTFA) Log(min) Glucose-6-phosphate-methoxime-4tms (M-TMSCN) Glucose-6-phosphate-methoxime-4tms (M-MSTFA) Ribose-methoxime-4tms (M-TMSCN) Ribose-methoxime-4tms (M-MSTFA) Vanillin-methoxime-1tms (M-TMSCN) Vanillin-methoxime-1tms (M-MSTFA) ptimalsilylationtimes thepeakabundancesoftrans-andcis-glucose-MEOX-5TMS derivativeswere3-to4-foldhigherwhenusingtheM- TMSCNmethodascomparedwiththeM-MSTFAmethod. Similarly,attheoptimalderivatizationtimethepeaksof trans-andcis-glucose-6-phosphate-MEOX-4TMSwere3.6- to4.5-foldhigherinthecaseoftheM-TMSCNmethodas se,inthecases oftrans-andcis-maltose-MEOX-8TMS,methoximation followedbyTMSCN(M-TMSCN)outperformedM- MSTFA,asthedetectedderivativespeakabundanceswere upto4.6timeshigherattheoptimalsilylationtimes. Toevaluatethederivatizationefficiencyofcarbohydrates, e.g.,anumberofderivativesandtheirratios,sixdifferentsugars wereindividuallyderivatizedbythefourdifferentmethods(see ESM,Figs.S11,S12,S13,andS14).Directsilylationusing eitherTMSCNorMSTFAresultedinfourderivativesofglucose, α-andβ-glucopyranose-5TMS(represented90%inaratioof 1:1)andα-andβ-glucofuranose-5TMS,whereasonlytwo derivatives,cisandtransisomersofglucose-methoxime- sucroseTMS-derivativesweredetectedusingallderivatization imesucrosederivativeswerenotobserved sincesucroseisanon-reducingsugarandcannotreactwiththe hreesucroseTMSderivatives, sucrose-8TMSwasthemostabundantoneandelutedlastwhile thetwoearlierelutingpeakscorrespondtosucroseTMS- creasingsucrose silylationtime,theratiosbetweentheTMS-derivativeschanged inallderivatizationmethods,andinthecaseofTMSCN,sucrose wasfullyconvertedtothesucrose-8TMSderivative,atthe rast,MSTFAwasnotable tofullysilylatesucrose,andevenafter15hsilylation,allthree lusion,directsilylation ofsucrosewithTMSCNandMSTFAderivatizationwasmore efficientintermsofreactionrateanddetectionascomparedwith theM-TMSCNandM-MSTFAmethods. Derivatizationoftriterpenes Attheoptimalsilylationtimes,detectionofsilylatedtriterpenes wascomparablewhenusingTMSCNandMSTFAmethods, whiletheM-TMSCNmethodhassignificantlyoutperformedthe M-MSTFAandabundancesofpeakswere1.4–3.4timeshigher (Fig.4;Table1).TMSCN-basedsilylationdepictedamaximum peakintensitiesofTMS-derivativesoflupeol,β-amyrin,and oleanolicacidafter50–60minofderivatizationandpeakinten- sitiesremainedstableevenafterthesilylationtimeof15h. Whereas,inthecaseofMSTFA-basedsilylationmetabolite peaksreachedtheirmaximumat30minofsilylationandfurther increaseofsilylationtimeresultedinasignificantdecreaseofthe peakintensities. Derivatizationofpolyphenols,organicandaminoacids Relativeabundancesofcaffeic,malic,p-coumaric,and phenyllacticacids'TMS-derivativesweretwotosixtimeshigher usingM-TMSCNcomparedwithM-MSTFAmethodinthe silylationtimerangeof10minto15h(seeESM,Fig.S4).These TMS-derivativesreachedmaximumabundanceswithinthefirst 2.5hofsilylationandafter15hofderivatization,peakabun- dancesstarttodecrease,presumablyduetodegradationofthe ndMSTFAmethodsperformed almostequallywellforthedetectionofcaffeic,p-coumaric, andphenyllacticacids,andpeakintensitiesincreasedmuchfaster andreachedmaximumat30 –ghthe 9202 Fig.4Relativepeakabundances oftrimethylsilylderivativesof triterpenes,suchaslupeol, oleanolicacid,β-amyrin,and betulinicacidinfourdifferent derivatizationmethods(TMSCN, M-TMSCN,MSTFA,andM- MSTFA)oversilylationtime ve peakabundancesofTMS derivativeswerecalculatedusing PARAFAC2modelingand ln(min)scaleofsilylationtime wasusedforbettervisualization x 10 6 5 5 ovetal. x 10 6 5 5 (a) P e a k a r e a 234567 (b) P e a k a r e a 4 3 2 1 0 4 3 2 1 0 234567 Log(min) Lupeol-1tms (TMSCN) Lupeol-1tms (M-TMSCN) Lupeol-1tms (MSTFA) Lupeol-1tms (M-MSTFA) Oleanolic acid-2tms (TMSCN) Oleanolic acid-2tms (M-TMSCN) Oleanolic acid-2tms (MSTFA) Oleanolic acid-2tms (M-MSTFA) Log(min) β-Amyrin-1tms (TMSCN) β-Amyrin-1tms(M-TMSCN) β-Amyrin-1tms(MSTFA) β-Amyrin-1tms(M-MSTFA) Betulinic acid-2tms (TMSCN) Betulinic acid-2tms (M-TMSCN) Betulinic acid-2tms (MSTFA) Betulinic acid-2tms (M-MSTFA) stabilityofTMS-derivativesofthesemetabolitesweresignifi- ptimal silylationtimes,abundancesofTMS-derivativeswere1.5–4 timeshigherwhenusingTMSCNandMSTFAcomparedwith dicatesahighersilylation efficiencyofthesolventfreereagentscomparedwiththesolvent, pyridine,interactionthatisusedduringthemethoximation. Highersilylationefficiencyofthereagentalonemayalsobe duetothebetteravailabilityofthesilylatingreagenttothe exchangeablehydrogenatoms. HighersensitivityandstabilityoftheTMS-derivativewas observedindetectionof2-hydroxy-3-methoxybenzoicacid, naringenin,catechin,succinicacid,and2-hydroxycinnamicacid byusingTMSCN-basedmethods(TMSCNandM-TMSCN) thanMSTFAandM-MSTFAmethods(Table1;andseeESM, Figs.S5,6,7,9,andS9).Bycontrast,optimalpeakintensityof 2-hydroxycinnamicacidwas3.2timeshigherusingMTFSA r,theintensityofthismetabolitewas reducedupto37%whenMSTFAsilylationtimewasprolonged, whichindicatesapossiblenon-stabilityofTMS-derivativesina silylationofvanillinusingTMSCN resultedindetectionofthevanillin-1TMSderivative,wherethe hydroxylfunctionalgroupwassilylated,whereasthealdehyde ptimalsilylationtime, intensityofthevanillin-1TMSpeakwasalmosttwofoldhigher whenMSTFAwasappliedascomparedwithTMSCN(Table1). However,inthecaseofM-TMSCNmethod,theintensityof vanillin-MEOX-1TMSwas2.23timeshigherthaninM- MSTFAderivatization. Attheoptimalsilylationtimesofaminoacids,valine,gly- cine,asparticacid,andphenylalanine,thedirectsilylation methodsperformedmuchbetterthanmethoximationfollowed tensitieswere1.6-58timeshigherwhen usingMSTFAcomparedwithM-MSTFA,and1.5-15times higherwhenusingTMSCNcomparedwithM-TMSCNmeth- tizationofserineandthreoninewerereagentspecific (seeESM,Figs.S10andS11),inthecaseofMSTFA,serine wasmainlydetectedintheformofserine-2TMS,whereaswith TMSCN,theabundanceofserine-3TMSexceededserine- 2TMSseveraltimes,asserine-3TMSincreasedandserine- r,bothserine derivativesweredetectedwhenusingM-TMSCNandM- ylationreactionrateandpeakabundanceswere higherinM-TMSCNmethodcomparedwithM-MSTFA.A similarpatternwasobservedinthederivatizationofthreonine. Choosingtheoptimalderivatizationtime OneofthecompromisemeasuresinGC-MSanalysisofcomplex lsituationwouldbe thattheTMS-derivativesofcomplexmixturemetabolitesreach theirmaximumatthesamederivatizationtimeandremainstable unately,thisisnotthecaseasTMS- derivativesofdifferentclassesofmetabolitesreachmaximumat thedifferentderivatizationtimes(eveninthesamereaction conditions)whichvariespeakabundancesasafunctionof degradationofthederivativesover ore,itiscriticaltochoose anoptimalderivatizationtimeforsimultaneousdetectionofa widevarietyofmetabolitesincomplexmixturesandwitha r,untilkineticderivatization samplingbecomesfeasible,thederivatizationtimemustbe keptconstantoverallsamplesdespitenotanoptimalderivati- uently,thestabilityofthe TMS-derivativesdependsonthechemistryoftheTMSderiv- ative,moisturecontent,derivatizationreagents,time,and Theuseoftrimethylsilylcyanidederivatization9203 study,thesignificanceofthesilylationtime infourdifferentderivatizationmethodswereevaluatedand variationsindetectionatthethreesilylationtimepointsclosest erved variationswerebetween7–21,6–18,16–39,and9–24%for TMSCN,M-TMSCN,MSTFA,andM-MSTFA,respectively. ForMSTFAthehighpeakvariationscanbeexplainedbyan e thanhalfofthemetabolitesofthestandardmixture,MSTFA r,amoresignificant influenceofthesilylationtimeandrelativelyfasterproduct ative lowvariationswhenusingM-TMSCNorM-MSTFAmaybe duetoaprotonscavengingactivityofthesolventpyridineasit emanymetabolites ofstandardmixturewerederivatizedanddetectedwellusing MSTFA,thelevelofreagentderivedunexpectedpeaksand variationswererelativelyhigherthantheotherderivatization methods. Derivatizationmethodcomparisonofblueberryextracts AsdirectsilylationbasedonMSTFAexhibitlowrepeatability, itwasomittedfromtheGC-MSanalysisofthetwoblueberry stextractisthephenolicextractA,whichis obtainedfrombasichydrolysis,whilethesecondone(pheno- licextractB)enknown andfiveunknownmetabolitesweredetectedfromtheGC-MS semetaboliteswere quantifiedfromeachderivatizationmethod,TMSCN,M- TMSCNandM-MSTFAthatwereevaluatedatthe13differ- the identifiedphenolicacidssuchasvanillic,caffeic,syringic,p- coumaric,m-coumaric,protocatechuic,andgallicacidhave previouslybeenfoundinaGC-MSstudyofsmallpolish berries[30].Moreover,metaboliteslike,succinic,malic, vanillic,p-coumaric,andcaffeicacidsthatareidentifiedfrom thePphenolicextractAwerealsoincludedinthestandard cilitatedacomparisonofderivatizationmeth- odperformancesfromtwodifferentcomplexsamplematrices. Forallthedetectedmetabolites,TMSCNmethodprovedtobe superiortoMSTFAintermsofsensitivity,derivatizationrate ptimalsilylationtimes,metab- oliteabundanceswere1.5–3.0timeshigherwithM-TMSCN r,direct silylationwithTMSCNoutperformedthemethoximationbased methodsandatoptimalsilylationtimes,peakintensitieswere 1.8–8.8timeshigher(Table2). Table2Trimethylsilyl(TMS)derivativesidentifiedfromblueberryphenolicextractA,sortedaccordingtotheirretentiontime No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 a Substance Glycerol-3TMS Succinicacid-2TMS Maleicacid-2TMS Lacticaciddimer-2TMS Malicacid-3TMS Unknown-1 Vanilicacid-2TMS Unknown-2 m-coumaricacid-2TMS Protocatechuicacid-3TMS Unknown-3 Unknown-4 Unknown-5 Syringicacid-2TMS p-coumaricacid-2TMS 2-methyl-2-methoxy-mandelate-2TMS Gallicacid-4TMS (cis)-caffeicacid-3TMS (trans)-caffeicacid-3TMS TMSCN a 4.96(40) 2.72(40) 3.84(40) 4.97(60) 2.71(50) 2.84(50) 4.65(50) 2.10(40) 6.71(60) 7.43(50) 2.91(50) 8.48(40) 9.6(50) 8.81(50) 5.15(40) 5.30(50) 4.87(50) 4.69(50) 2.46(60) M-TMSCN a 2.64(40) 2.00(40) 1.73(50) 1.96(60) 1.73(60) 1.60(40) 2.14(150) 1.66(40) 2.72(40) 2.94(40) 1.23(60) 2.25(30) 1.5(50) 2.33(40) 1.51(60) 1.82(40) 2.09(40) 2.13(60) 1.81(150) M-MSTFA a (150) (300) (150) (300) (300) (50) (150) (150) (150) (40) (150) (60) (60) (150) (150) (60) (50) (150) (150) RI b 1,267 1,308 1,351 1,391 1,489 1,760 1,768 1,784 1,807 1,830 1,850 1,866 1,886 1,907 1,942 1,954 1,975 1,992 2,151 EI-MS c 94 95 92 90 91 96 93 96 89 91 86 89 92 93 PARAFAC2-basedrelativeabundancesofderivativesattheiroptimalsilylationtimesinminutes(indicatedinthebrackets),foreachderivatization methodareillustratedastheirratiototherelativeabundanceofthecorrespondingderivativeinthemethodM-MSTFA RetentionindicesofmetabolitederivativeswerecalculatedbasedonVandenDoolandKratzequationbyusingretentiontimesofC10–C40alkanes EI-MS-basedmassspectracomparisoninvolvedWiley08,NIST05aswellasin-housetriterpeneslibraries b c ovetal. Figure5displaystherelativeabundancesTMS-derivatives ofeightmostabundantmetabolitesatdifferentsilylationtime ureshowsthatthedirectsilylationusing TMSCNresultedinhighermetabolitepeakintensitiesthan M-TMSCNandMSTFAmethods,atallsilylationtimepoints. Likewise,ateverysilylationtimepoint,abundancesofall metaboliteswerehigherwhenusingthederivatizationmethod 5alsoshows anincreaseinmetaboliteabundancesatthelatersilylation times(45and60h).Thismightbeduetoanunintendedup- concentrationbecauseoftheevaporationofthesolventpyri- ,itisimportant tofindthebestcompromiseinsettingthederivatizationtime toobtainanoptimalprofilewithhighrepeatability. RepeatabilityofGC-MSanalysisoftheblueberryextracts wasevaluatedbycalculatingtherelativestandarddeviations of19quantifiedmetabolitesinfourreplicatesofeachderiv- n errorsofthederivatizationmethodsTMSCN,M-TMSCN andM-MSTFAwere4.6(varyingfrom2.1to8.6%forall metabolites),9.0(3.5to18.1%),and15.2%(3.7to21.3%), epeatabilitytestsareinagreementwith therobustnessofthederivatizationmethodsevaluatedinthe irectsilylationmethod TMSCNperformedbestintermsofsilylationreactionspeed, efficiency,andrepeatability,thismethodwasusedfortheGC- tractcontained phenolicandotherorganicacidsthatarepresentinfreeforms, andconjugatedformswithothercellmembranecomponents tizationofthisextracts withTMSCNfor40minenabledidentificationof27metab- olitesbasedonRIandEI-MSpatterns,includingthe triterpenoidssuchas,β-amyrin,α-amyrin,andoleanolicacid. Thisresultconfirmedthepresenceoftriterpenoidsaponins derivedfromβ-amyrin,α-amyrin,andoleanolicacid,as previouslyreportedinastudyofanticancerpropertiesof blueberryfruits(lus)[36,37].Thedevelopedproto- colpromisesmoreinsightintosecondarymetabolitesofthe Fig.5Relativepeakabundances oftrimethylsilylderivativesof somephenolicandorganicacids identifiedfromblueberry phenolicextractinfourdifferent derivatizationmethods(TMSCN, M-TMSCN,MSTFA,andM- MSTFA)oversilylationtime ve peakabundancesofTMS derivativeswerecalculatedusing PARAFAC2modelingand ln(min)scaleofsilylationtime wasusedforbettervisualization x 10 8 6 4 2 0 6 x 10 15 5 (a) P e a k a r e a (b) P e a k a r e a 10 5 24 Log(min) 68 0 24 Log(min) 68 Protocatechuic acid-3tms (TMSCN) Protocatechuic acid-3tms (M-TMSCN) Protocatechuic acid-3tms (M-MSTFA) Syringic acid-2tms (TMSCN) Syringic acid-2tms (M-TMSCN) Syringic acid-2tms (M-MSTFA) p-Coumaric acid-2tms (TMSCN) p-Coumaric acid-2tms (M-TMSCN) p-Coumaric acid-2tms (M-MSTFA) 2-methyl-2-methoxy-mandelate-2tms (TMSCN) 2-methyl-2-methoxy-mandelate-2tms (M-TMSCN) 2-methyl-2-methoxy-mandelate-2tms (M-MSTFA) x 10 15 5 x 10 2 5 (c) P e a k a r e a (d) P e a k a r e a 10 1.5 1 5 0.5 0 0 2468 2468 Log(min) Vanilic acid-2tms (TMSCN) Vanilic acid-2tms (M-TMSCN) Vanilic acid-2tms (M-MSTFA) Caffeic acid-3tms (TMSCN) Caffeic acid-3tms (M-TMSCN) Caffeic acid-3tms (M-MSTFA) Log(min) Lactic acid dimer-2tms (TMSCN) Lactic acid dimer-2tms (M-TMSCN) Lactic acid dimer-2tms (M-MSTFA) 2,5-dihydroxycinnamic acid-3tms (TMSCN) 2,5-dihydroxycinnamic acid-3tms (M-TMSCN) 2,5-dihydroxycinnamic acid-3tms (M-MSTFA) Theuseoftrimethylsilylcyanidederivatization plant-derivedsamplesandenablesdetectionoflowconcen- trationmetabolites. Conclusions TheGC-MSprofilesofcomplexmetabolitemixturesobtained fromfourderivatizationmethodsweredifferentandsignifi- ultssuggestthat forthemajorityoftheinvestigatedmetabolitesofthecomplex mixtures,TMSCN-basedmethodsoutperformedMSTFA- basedmethodsintermsofsilylationreactionspeed,sensitiv- ity,r,direct silylationmethods,TMSCNandMSTFAperformedequally - though,theMSTFAmethoddisplayedsignificantlylower TMS-derivativestabilityovertimeandlowerrepeatabilityof ral,directsilylationmethods providedbettersensitivityandmorerapidsilylation,though methoximationbasedmethodsillustratedhighermetabolite ,basedontheresultsofthisstudy,itisrecom- mendedtopayaspecialattentiontotheconsistencyofthe samplepreparationandderivatizationpracticepriortocom- aseofthedirectsilylation,itis advisedtouse50–100μLpureTMSCNforcompletedried extractsofthe100-to200-μLsampleandtoincubateat37°C itialmethoxiaminationisrequiredthenthe trimethylsilylationtimemustbeincreasedto120–150minto allowsilylationofallthelabileprotonsinthepresenceof ragesilylationvariationsofmethodsin- creasedinthefollowingorder,M-TMSCN MSTFA almostinoppositedirection,MSTFA TMSCN silylationofvariousclassesofmetabolitesbyusingTMSCN eitheraloneorinconjunctionwithapriormethoximationstep. TheseresultsillustratehighpotentialofTMSCNasanalter- nativesilylationreagentforderivatizationofcomplexbiolog- icalmixturesinGC-MSmetabolomics. AcknowledgmentsTheauthorsthanktheFacultyofScienceforsupport totheelite-researcharea“Metabolomicsandbioactivecompounds”witha ovandTheMinistryofScienceandTechnol- ogyforagranttoUniversityofCopenhagen(en)withthetitle “Metabolomicsinfrastructure”underwhichtheGC-MSwasacquired. References ntiKK,HoP,ChanE(2008)JChromatogrB-AnalTechnol BiomedLifeSci871:202–211 ,DavidF,LynenF,RumpelK,DugardeynJ,VanDer StraetenD,XuG,SandraP(2011)JChromatogrA1218: 3247–3254 9205 (2008)Trac-TrendsAnalChem27:261–269 erU,WagnerC,KopkaJ,TretheweyRN,WillmitzerL(2000) PlantJ23:131–142 ,KopkaJ,TretheweyRN,WillmitzerL(2000)AnalChem 72:3573–3580 ,SchauerN,KopkaJ,WillmitzerL,FernieAR(2006)Nat Protoc1:387–396 F(1978)Recentadvancesinthesilylationoforganic :BlauK,KingG(eds) &Son Inc,Philadelphia,PA,pp152–200 MandLuukkainT(1965)AnalyticalChemistry37:955 gMG,MossAM,HorningEC(1968)AnalBiochem 22:284–294 CW,NakamotoH,andZumwaltRW(1969)Journalof Chromatography45:24–51 rH(1982)JChromatogr236:355–360 H,ChrysanthopoulosPK,KlapaMI(2008)JChromatogrB- AnalTechnolBiomedLifeSci871:191–201 F(2013)JChromatogrA1296:2–14 JL(1999)JChromatogrA844:1–22 tographyCatalogue1998–99,RegisTechnologies, 1998;pp.86–88 vatization,Pierce2003–ationshandbookand catalog rgJ,JonssonP,NordstromA,SjostromM,MoritzT(2004) AnalBiochem331:283–295 ssonAPH,MoritzT,MulderH,SpegelP(2012)Metabolomics 8:50–63 AE(1968)Chemicals Co,Rockford,IL,p58 inaMV,,ovskii(1975)RassianChem. Rev.44,733 (2012)Derivatizationreactionsandreagentsforgas chromatographyanalysis,advancedgaschromatography— progressinagricultural,biomedicalandindustrialapplications. In:MustafaAliMohd(ed),:978-953-51- 0298-4 LH,ParkerGA,LloydNC,FreyCL,MichaelKW(1967)J AmerChemSoc89:857 H(2002)Resonance7:48 (1961)JOrgChem26:232 ffA,LingemanH(1984)JPharmBiomedAnal2:337– 380 erLandBrokmeieD(1968)TetrahedronLetters9: 1325–1328 awaS,FujikawaS(2012)TetrahedronLett53:1075– 1077 ,PatilG(1986)JOrgChem51:3545–3548 PP,KarasiewiczRJ,RosenP,ToomeV(1992)JChromatogr Sci30:29– 31 owskiR,NaczkM,NesterowiczJ(2005)JAgricFoodChem 53:2118–2124 M,PopielarzMJ,CallejonRM,MoralesML,TroncosoAM, PetersenMA,Toldam-AndersenTB(2010)JChromatogrA1217: 4422–4429 ovB,AmigoJM,BakS,EngelsenSB(2012)JchromatogrA 1266:84–94 ingH(1933)JEducPsychol24:417–441 doolHandKratzPD(1963)JournalofChromatography11: 463–471 ,BroR(2008)AnalBioanalChem390:281–285 ,KotoM,KomatsuH,IgoshiK,KobayashiH,ItoY,Nohara T(2004)FoodSciTechnolRes10:56–59 lA,PaczkowskiC,KoivuniemiH,HuttunenS(2012)JAgric FoodChem60:4994–5002
版权声明:本文标题:硅烷衍生化 内容由网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://www.roclinux.cn/p/1735534041a1673959.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论