admin 管理员组

文章数量: 1086019


2024年4月16日发(作者:eval转换为什么数据类型)

已知向量求平行垂直

英文回答:

To determine if two vectors are parallel or

perpendicular, we can use the dot product and cross product.

1. Dot Product: If the dot product of two vectors is

zero, then the vectors are perpendicular. If the dot

product is nonzero, we can determine if the vectors are

parallel by comparing their magnitudes.

For example, let's consider two vectors: A = (2, 3) and

B = (-3, 2).

The dot product of A and B is: A · B = (2 -3) + (3 2)

= -6 + 6 = 0. Since the dot product is zero, we can

conclude that A and B are perpendicular.

2. Cross Product: If the cross product of two vectors

is zero, then the vectors are parallel. If the cross

product is nonzero, we can determine their orientation.

For example, let's consider two vectors: C = (1, 2, 3)

and D = (4, 5, 6).

The cross product of C and D is: C × D = (2 6 3 5, 3

4 1 6, 1 5 2 4) = (-3, 6, -3). Since the cross product

is nonzero, we can conclude that C and D are not parallel.

中文回答:

要确定两个向量是否平行或垂直,我们可以使用点积和叉积。

1. 点积,如果两个向量的点积为零,则它们垂直。如果点积不

为零,则可以通过比较它们的大小来确定它们是否平行。

例如,我们考虑两个向量,A = (2, 3) 和 B = (-3, 2)。

向量 A 和 B 的点积为,A · B = (2 -3) + (3 2) = -6 +

6 = 0。由于点积为零,我们可以得出结论 A 和 B 是垂直的。

2. 叉积,如果两个向量的叉积为零,则它们是平行的。如果叉

积不为零,则可以确定它们的方向。

例如,我们考虑两个向量,C = (1, 2, 3) 和 D = (4, 5, 6)。

向量 C 和 D 的叉积为,C × D = (2 6 3 5, 3 4 1 6, 1

5 2 4) = (-3, 6, -3)。由于叉积不为零,我们可以得出结论

和 D 不是平行的。

C


本文标签: 向量 平行 转换 垂直 确定