admin 管理员组

文章数量: 1086019


2024年4月16日发(作者:数组map和foreach的区别)

泊松方程和波动方程

英文回答:

Poisson's equation is a partial differential equation

that describes the potential function of a scalar field. It

is given by:

$$nabla^2 phi = -rho$$。

where $phi$ is the potential function, $rho$ is the

charge density, and $nabla^2$ is the Laplacian operator.

The wave equation is a partial differential equation

that describes the propagation of waves. It is given by:

$$frac{partial^2 u}{partial t^2} = c^2 nabla^2 u$$。

where $u$ is the wave function, $t$ is time, $c$ is the

wave speed, and $nabla^2$ is the Laplacian operator.

中文回答:

泊松方程是一个描述标量场势函数的偏微分方程。其形式为:

$$nabla^2 phi = -rho$$。

其中,$phi$ 为势函数,$rho$ 为电荷密度,$nabla^2$ 为

拉普拉斯算子。

波动方程是一个描述波传播的偏微分方程。其形式为:

$$frac{partial^2 u}{partial t^2} = c^2 nabla^2 u$$。

其中,$u$ 为波函数,$t$ 为时间,$c$ 为波速,

$nabla^2$ 为拉普拉斯算子。

Poisson's equation and the wave equation are both

important equations in physics. Poisson's equation is used

to calculate the potential function of a charge

distribution, while the wave equation is used to describe

the propagation of waves.

泊松方程和波动方程都是物理学中的重要方程。泊松方程用于

计算电荷分布的势函数,而波动方程用于描述波的传播。


本文标签: 方程 波动 描述 泊松 数组