admin 管理员组

文章数量: 1086019


2024年4月22日发(作者:php explode函数应用查询)

矩阵与矩阵的乘法例题

好像目前还没有这方面题目的总结。这几天连续看到四个问这类题目的人,今天在这

里简单写一下。这里我们不介绍其它有关矩阵的知识,只介绍矩阵乘法和相关性质。

不要以为数学中的矩阵也是黑色屏幕上不断变化的绿色字符。在数学中,一个矩阵说

穿了就是一个二维数组。一个n行m列的矩阵可以乘以一个m行p列的矩阵,得到的结

果是一个n行p列的矩阵,其中的第i行第j列位置上的数等于前一个矩阵第i行上的m

个数与后一个矩阵第j列上的m个数对应相乘后所有m个乘积的和。比如,下面的算式

表示一个2行2列的矩阵乘以2行3列的矩阵,其结果是一个2行3列的矩阵。其中,

结果的那个4等于2*2+0*1:

下面的算式则是一个1 x 3的矩阵乘以3 x 2的矩阵,得到一个1 x 2的矩阵:

矩阵乘法的两个重要性质:一,矩阵乘法不满足交换律;二,矩阵乘法满足结合律。

为什么矩阵乘法不满足交换律呢?废话,交换过来后两个矩阵有可能根本不能相乘。为什

么它又满足结合律呢?仔细想想你会发现这也是废话。假设你有三个矩阵A、B、C,那

么(AB)C和A(BC)的结果的第i行第j列上的数都等于所有A(ik)*B(kl)*C(lj)的和(枚举所

有的k和l)。

经典题目1 给定n个点,m个操作,构造O(m+n)的算法输出m个操作后各点的位

置。操作有平移、缩放、翻转和旋转

这里的操作是对所有点同时进行的。其中翻转是以坐标轴为对称轴进行翻转(两种情

况),旋转则以原点为中心。如果对每个点分别进行模拟,那么m个操作总共耗时

O(mn)。利用矩阵乘法可以在O(m)的时间里把所有操作合并为一个矩阵,然后每个点与

该矩阵相乘即可直接得出最终该点的位置,总共耗时O(m+n)。假设初始时某个点的坐标

为x和y,下面5个矩阵可以分别对其进行平移、旋转、翻转和旋转操作。预先把所有m

个操作所对应的矩阵全部乘起来,再乘以(x,y,1),即可一步得出最终点的位置。

经典题目2 给定矩阵A,请快速计算出A^n(n个A相乘)的结果,输出的每个数

都mod p。

由于矩阵乘法具有结合律,因此A^4 = A * A * A * A = (A*A) * (A*A) = A^2 * A^2。

我们可以得到这样的结论:当n为偶数时,A^n = A^(n/2) * A^(n/2);当n为奇数时,

A^n = A^(n/2) * A^(n/2) * A (其中n/2取整)。这就告诉我们,计算A^n也可以使

用二分快速求幂的方法。例如,为了算出A^25的值,我们只需要递归地计算出A^12、

A^6、A^3的值即可。根据这里的一些结果,我们可以在计算过程中不断取模,避免高

精度运算。

经典题目3 POJ3233 (感谢rmq)

题目大意:给定矩阵A,求A + A^2 + A^3 + ... + A^k的结果(两个矩阵相加就

是对应位置分别相加)。输出的数据mod m。k<=10^9。

这道题两次二分,相当经典。首先我们知道,A^i可以二分求出。然后我们需要对整

个题目的数据规模k进行二分。比如,当k=6时,有:

A + A^2 + A^3 + A^4 + A^5 + A^6 =(A + A^2 + A^3) + A^3*(A + A^2 +

A^3)

应用这个式子后,规模k减小了一半。我们二分求出A^3后再递归地计算A + A^2

+ A^3,即可得到原问题的答案。

经典题目4 VOJ1049

题目大意:顺次给出m个置换,反复使用这m个置换对初始序列进行操作,问k次

置换后的序列。m<=10, k<2^31。

首先将这m个置换“合并”起来(算出这m个置换的乘积),然后接下来我们需要

执行这个置换k/m次(取整,若有余数则剩下几步模拟即可)。注意任意一个置换都可

以表示成矩阵的形式。例如,将1 2 3 4置换为3 1 2 4,相当于下面的矩阵乘法:

置换k/m次就相当于在前面乘以k/m个这样的矩阵。我们可以二分计算出该矩阵的

k/m次方,再乘以初始序列即可。做出来了别忙着高兴,得意之时就是你灭亡之日,别忘

了最后可能还有几个置换需要模拟。

经典题目5 《算法艺术与信息学竞赛》207页(2.1代数方法和模型,[例题5]细菌,

版次不同可能页码有偏差)

大家自己去看看吧,书上讲得很详细。解题方法和上一题类似,都是用矩阵来表示操

作,然后二分求最终状态。

经典题目6 给定n和p,求第n个Fibonacci数mod p的值,n不超过2^31

根据前面的一些思路,现在我们需要构造一个2 x 2的矩阵,使得它乘以(a,b)得到的

结果是(b,a+b)。每多乘一次这个矩阵,这两个数就会多迭代一次。那么,我们把这个2 x

2的矩阵自乘n次,再乘以(0,1)就可以得到第n个Fibonacci数了。不用多想,这个2 x

2的矩阵很容易构造出来:

经典题目7 VOJ1067

我们可以用上面的方法二分求出任何一个线性递推式的第n项,其对应矩阵的构造方

法为:在右上角的(n-1)*(n-1)的小矩阵中的主对角线上填1,矩阵第n行填对应的系数,

其它地方都填0。例如,我们可以用下面的矩阵乘法来二分计算f(n) = 4f(n-1) - 3f(n-2)

+ 2f(n-4)的第k项:

利用矩阵乘法求解线性递推关系的题目我能编出一卡车来。这里给出的例题是系数全

为1的情况。

经典题目8 给定一个有向图,问从A点恰好走k步(允许重复经过边)到达B点的

方案数mod p的值

把给定的图转为邻接矩阵,即A(i,j)=1当且仅当存在一条边i->j。令C=A*A,那么

C(i,j)=ΣA(i,k)*A(k,j),实际上就等于从点i到点j恰好经过2条边的路径数(枚举k为中

转点)。类似地,C*A的第i行第j列就表示从i到j经过3条边的路径数。同理,如果要

求经过k步的路径数,我们只需要二分求出A^k即可。


本文标签: 矩阵 乘法 题目 置换