admin 管理员组文章数量: 1086019
2024年4月24日发(作者:如何装sklearn)
Functional Group Interconversion
C-H
C-OR
1-
a
C-OH
b
C-X
c
C-NH
2
d
C-S
C-OH
2- a
C-OH
b
C-(OR)
2
c
C(O)OR
d
C-H
e
C=C
f
C-CN
C-N
C=O
e
C=O
f
C=C
g
C-CN
h
C-CO
2
H
i
C-CHO
j
C(O)X
3- a
C-H
b
C-OR
c
C-X
d
C-NH
2
e
C-OCH
2
OR
f
C-OC(O)R
g
C---OH
h
C=O
i
j
C O
C=C
4- a
b
c
d
e
f
g
h
C-H
C-N
C-X
C-OH
C=O
5-
a
C=O
b
C=S
c
C=N-OH, C=N-H
d
C C
e
C N
f
C=C-OR; C=C-SR
g
C(OR)
2
; C(SR)
2
h
C-OH
i
C-NH
2
; C-NO
2
j
C-Br
k
C-H
C=C
C-C(O)Z
C N
C C
C=C
RC CH
RCH
2
-SO
2
Ph
C C
C=C
RCH(CO
2
H)-CH
3
-C(O)-CH
3
O
O
X
O
C-X
8-
a
C-OH
b
C-NH
2
c
C=O
d
C(O)Z
e
C-H
C-CH
3
9-
a
C-X
6-
a
b
c
d
e
f
g
h
i
7-
a
CH-CX
b
CH-CH
c
CX-CY
X
d
C C
e
-C(O)-CH
3
f
C=O
g
C C
h
C CH
i
j
C=C
C-OH
CRR'=CHX
C-H
1-
a
C-OH
b
C-X
c
C-NH
2
d
C-S
e
C=O
f
C=C
g
C-CN
h
C-CO
2
H
i
j
C-CHO
C(O)X
1-a
C-OH
C-H
O
J. Org. Chem. 2000, 65, 6179
O
RCH
2
O S
O O
CH
3
tosylate
mesylate
triflate
toluenesulfonyl chloride (s)
~ $ 30 / Kg
methanesulfonyy chloride (l)
~ $ 30 / Kg
purification textbook
dry pyridine: from CaH
2
and distilled
(1). for 1', 2' alcohol:
CH
3
S Cl
O
i. p-TsCl // LiAlH
4
RCH
2
OH
dry Py
Ph Ph
OH
LiAlH
RCH
2
O S CH
3
O
O
4
RCH
2
-H
RCH
2
O S CF
3
O
Ph
via:
O
Cl
2
In
Cl
Ph
H
ii. Ph
2
SiHCl / InCl
3
Ph
2
SiHCl / InCl
3
CHCl
2
rt, 3 hr
Ph
H
Ph
InCl
3
indium trichloride
a unique Lewis acid catalyst,
acceleratedeoxgyenation
SiPh
2
JOC, 2001, 66, 7741.
(2). for 3' alcohol:
CH
3
CH
3
i. ClC(S)OPh // n-Bu
3
SnH
S
Cl
n-Bu
3
SnH
CH
3
CH
3
H
CH
3
OH
CH
3
C O Ph
S
S
O C O Ph
SnBu
3
via:
O C O Ph
thiocarbonate
(an ester)
steric OK
ii. Et
3
SiH / Lewis acid
JOC, 2000, 65, 6179.
1-b
C-X
C-H
Br
n-Bu
3
SnH
AIBN
H
(1). free radical reduction
i
n-Bu
3
SnH / AlBN
ii NaBH
4
/ InCl
3
/ CH
3
CN
Bu
3
SnH: (l), easy to remove
Ph
3
SnH: (s), hard to remove
Me
3
SnH: too volatile, toxic
JACS, 2002 , 124, 906.
JACS, 1972, 94, 8905.
JOC, 1969, 34, 3923.
THL, 1969, 3095.
radical reagent
i LiAlH
4
(2). hydride reduction
ii NaBH
4
iii NaBH
3
CN
NaBH
3
CN: stable at pH 5-6
JOC, 1976, 41, 3064.
hygroscopic, dried self, suggest: buy small amount each time
unstable in acid, form H
2
gas; stable in weak base
iv LiBHEt
3
(super hydride)
(3). metal reduction
i
Na / NH
3
; Li / NH
3
; Na / EtOH
ii Zn; Fe; Sn; Mg
Br
Mg / Et
2
O
H
2
O
H
(Grignard reagent)
Br
N
CN
N
CN
- N
2
CN
n-BuSnBr n-BuSn
n-BuSnH
R
n-BuSn
R
n-BuSnH
R
H
(AIBN)
azobisisobutyronitrile radical initiator
1-c
C-NH
2
(1).
RCH
2
NH
2
C-H
p-TsCl
BuLi
LiAlH
4
NaH
RCH
2
-H
ArSO
2
Cl
BuLi
- BuH
RCH
2
N SO
2
Ar
RCH
2
NH SO
2
Ar
RCH
2
NH
2
Hinsberg's test
tosylamide
O
p-TsCl
(2).
Ar-NH
2
NaH
NH
2
Cl
p-TsCl
Ar-H
CH
3
S Cl
O
LiAlH
4
RCH
2
N
RCH
2
-H
tosylimide
SO
2
Ar
weaker C-N bond
NaH
- ArSO
2
H
SO
2
Ar
SO
2
Ar
Ar
N
NH
2
Ar N
NH
Ar N
N
Ar-H
(3).(3).
Ar-NH
2
NaNO
2
H
3
PO
2
HCl
Ar-H
via:
JOC, 2001, 66, 8293.
(4).(4).
RCH
2
NH
2
X
RCH
2
NMe
3
-
Ag
2
O
RCH
2
NMe
3
OH
-
R=CH
2
R-C
H
3
1-d
C-S
C-H
radical mechanism
EtO
2
C
HN
MeO
2
C
S
N
JOC, 1985, 50, 427.
CH
2
Ph
EtO
2
C
HN
N
CH
2
Ph
Raney Nickel: Ni - Al alloy, suspension
(1). Raney Ni
(2). Li / NH
3
burn filter paper if dry
mechanism uncertain, probably radical
O
Raney Ni
MeO
2
C H
(3). L iAlH
4
/ CuCl
2
JCS Perkin Trans I, 1973, 654.
NaBH
4
/ NiCl
2
NaBHEt
3
/ FeCl
2
(or CoCl
2
, VCl
3
)
Chemistry:
R-SH
R-SS-R
remove: Hg
+
; Ni
R-S-R R
2
SO
R
2
SO
2
1-e
C=O
C-H
best suitable for aryl ketone (ArCOR); not good for conjugate ketone
OH
O
preparation: HgCl
2
into Zn
O
H
HS
SH
S
S
H
thioketal
Ra(Ni)
H
H
BF
3
,
CH
2
Cl
2
(1). Clemmensen reduction: Zn-Hg / HCl
similar: Sn / HCl
(2). thioketal:
SH
SH
/ BF
3
, CH
2
Cl
2
// RaNi
N
2
H
4
, OH, heat
-
acidic
C
6
H
13
thioketal: inert to LAH; react with RaNi; smell terrible and stay long; discard shoses
neutral
(3). Wolff-Kishner reduction:
basic
O
Pd-C
Ph
HCO
2
NH
4
Ph Ph
O
N
2
H
4
N NH
2
OH
-
N N H
H
OH
-
N N H
- N
2
H
H
N N
major side-product: drawback of the reaction
(4). Pd-C / HCO
2
NH
4
: mild, efficient
Ph
(5). Tosylhydrazone reduction (Shapiro reaction):
(modified Wolff-Kishner reduction):)
TsNHNH
2
// RED
Synthesis, 2001, 16, 2370.
N N Ts
H
-
H
H
for acyclic, may C=C side product
O
B
H
O
(6). enol derivatives:
Tf
2
O /
N
// H
2
/ PtO
2
limit: for -H compd. RED choice: MeLi; NaBH
3
CN (good)
LAH, NaBH
4
: 2 group compete at Stanford U.
B
2
H
6
: very flamable, fire if shoot out from syringe
O
(7). Et
3
SiH / CF
3
COOH
NO
2
Ph
Et
3
SiH
CF
3
COOH
NO
2
Ph
H O
C C
O
O
CF
3
S O S
CF
3
O
O
OTf
C C
H H
H
2
PtO
2
JOC, 1973, 38, 2675.
C C
H
N
PtO
2
+ H
2
= Pt
C=C
C-C-H
catalyst:
H
2
H
2
, PtO
2
PtO
R
2
R
Pd-C
N
TFA , 60 ℃ N
PtO
2
R = NHAc , NH
2
(1). H
2
/ cat
Rh-C; Rh-Al ;
HO
HO
in acetic condition
2
O
3
RhCl(PPh
OH
H
H
OH
3
)
3
stereoselcetive: same side as OH (due to H bond)
JOC, 2002, 67, 7890.
Ni
(2). HN=NH (diimide)
JOC, 1993, 58, 4979.
CO
2
Me
CO
2
Me
(3). B
2
H
6
// RCO
2
H, heat
O
RhCl(PPh
3
)
3
O
RhCl(PPh
3
)
3
O
benzene
O
(4). n-Bu
2
SnI / MgBr
2
-Et
2
O // H
3
O
+
12 hr
O
O
Wilkinson's catalyst: regioselective, prefer isolated double bond
JACS, 1979, 101, 7020.
soluble in org solvent, 9 Ph group
$ 50 / 25 g
via:
H
CH
3
CO
2
D
H
B R
N
2
H
2
: unstable; generated in situ from "DEAD" (diethyl azodicarboxylate)
JCS, PT1, 1986, 546.
R
D
or from: N
2
H
4
+ H
2
O
2
; N
2
H
4
+ Cu(II) + O
2
; NH
2
OH + NH
2
OSO
3
prepare isotope
EtO
2
C N N CO
2
Et
OH
-
HO
2
C
R
R
N N CO
2
H
H N N H
R
C C
R
R
H
R
O
C C
O
H
- 2 CO
2
- N
2
R
R
N N
O
syn-addition
H
H
O
OEt
OEt
n-B
u
I
OEt
2
SnI
H
3
O
+
OEt
not radical mech.
O
MgBr
2
-Et
2
O
O
via:
I
O
O
Sn
JOC, 2001, 66, 8690.
H
H
R
R
Sn
R
R
1-f
1-g
C C N
C-H
CN: ~ X (pseudo halogen), form KCN, NaCN with IA elements
(1). K / Al
2
O
3
K / HMPA
JOC, 1980, 45, 3227
not quite same:
-
not for H
R C C N
characteristcs: IR, CMR
+
(2). Na / NH
3
which is ?
toxic?
highly toxic, cancer suspected agent?
yes for white mouse, uncertain for human
HMPA: hexam ethylp hosphoramide (Me
2
N)
3
P=O
= HMPT: hexam ethyl phosphoric t riamide (Me
2
N)
3
P=O
b.p. ~ 230 C
modified to:
N N
O
1-h
C CO
2
H
C-H
-CO
2
O
R
O
H
O
Ph
R
(1). particular structure:
Ph
solvent
N
Ph
- CO
2
CO
2
Ph
Ph
N
R
R
H
Ph
(2). normal structure: SOCl
2
// PhSeH // n-Bu
3
SnH
other Cl sources: PCl
5
; (COCl)
2
oxalyl chloride
(3). organic electrochemistry
CO
2
H
R
pyridinium betaine
e
CO
2
H
-
O
RCH
2
C OH
SOCl
2
O
RCH
2
C Cl
PhSeH
O
RCH
2
C SePh
n-Bu
3
SnH
RCH
2
H
(radical mechanism?)
organoselenium chemistry
1-i
CHO
C-H
O
O
H
(1). RhCl(PPh
3
)
3
(Wilkinson's cat)
(2). Rh(DPPD)
2
+
Cl
-
DPPD = Ph
2
P-CH
2
CH
2
-PPh
2
1-j
C(O)X
-CH
3
HSiEt
3
/ B(C
6
F
5
)
3
Cl
Rh
PPh
3
R C
PPh
3
- PPh
Cl
PPh
3
R C H
PPh
3
PPh
3
Rh
Rh
3
PPh
3
Cl
PPh
3
oxidative addition
R
H
Rh
PPh
3
Cl
Rh
PPh
3
rearrangement
C
PPh
3
R H +
C
PPh
3
O
Cl
reductive elimination
O
O
R Cl
R CH
3
JOC, 2001, 66, 1672.
RC-OR
2- a
b
c
RC-OH
RC-(OR)
2
RC(O)OR
d RC-H
e RC=C
f RC-CN
2-a
RC-OH
RC-OR
trimethyloxonium tetrafluoroborate
JCS, 1930, 2166.
Me group:
i. Williamson ether synthesis, S
N
2 type
ii. not a good protecting group, too stable to convert back to alcohol
application: for protecting group
(1). Me: base / CH
3
-X
generate H
2
, or butane gas
JOC, 1988, 53, 2985.
base: NaH, n-BuLi, Ag
2
O
RC-OCH
3
(2). PhCH
2
-: base / PhCH
2
-X
-
CH
3
-X: CH
3
I; CH
3
OSO
2
R; (CH
3
)
3
O
+
BF
4
, (CH
3
)
2
SO
4
PhCH
2
-Cl
PhCH
2
-X: PhCH
2
-Br: reactivity good
PhCH
2
-I: reactivity better than PhCH
2
Br,
RC-OCH
2
Ph = RC-OBZl = RC-OBn
generated in situ, PhCH
2
Br + NaI
Br
(3). allyl: base /
RC-OCH
2
CH=CH2
Benzyl- group:
i. abbreviation: benzyl = PhCH
2
= Bzl = Bn
ii. deprotecting: H
2
/ Pd-C
(4). t-Bu: acid cat /
RC-OtBu
(5). trityl: py // Ph
3
C-Br
acid:
H
2
SO
4
H
3
PO
4
BF
3
-Et
2
O
CH
3
CH
3
Si
CH
3
Cl
CH
3
Si
CH
3
t-B
group:
Willianson synthesis (base, S
N
2) not work: elimination side-product with base
RC-OCPh
3
= RC
-
OTr
Et
3
N / TMS-Cl
N
N
H
Cl
Ph
Si
Ph
Cl
(6). silyl: Et
3
N / R
3
SiCl
RC-OSiR
3
(7). acetal / ketal: (see 3e)
(8). ArF / CsF
/
TBDMS-Cl
NO
2
base
Trityl group: (tirphenylmethyl)
i. S
N
1 reaction
ii. abbreviation: triphenylmethyl = trityl = -CPh
3
= -Tr
(RO-Tr)
iii. advantage: high MW, easy to handle (small amount become large amount)
Silyl group:
i. Willianson synthesis OK: Si - Cl bond long
ii. stability of silyl in acid/base: RC-O-TBDPS > RC-O-TBDMS >> RC-O-TBS
iii. abbrev.: TBDMS = tert-butyl-dimethylsilyl = TBS =
Br
TBDPS-Cl
NO
2
RO
ROH
OR
F
CsF
2-b
RC-(OR)
2
(1). h / HSiCl
3
RC-OR
R
OR
O
RCH
2
OR
RCH
2
OCH
2
CH
2
OH
aromatic substitution reaction
usually contain NO
2
, F as leaving group
activator / hydride source
R
O
OCH
3
OCH
3
HCl
OCH
3
H
OCH
3
(2). HCl / NaBH
3
(CN)
(3). AlCl
3
/ LiAlH
4
O
O
AlCl
3
OH
O
LiAlH
4
O
2-c
R C OR
RC-OR
SiCl
3
radical mechanism:
t-BuO
RaNi with C=S
(4).
(1).
(1). hv / HSiCl
O
3
O
O
(2). HCl / tBu-OO- tBu
JOC, 1974 , 39, 2470.
HCl
tBu-OO-tBu
(3). Lawesson reagent / RaNi
BF
3
/ NaBH
4
limit for: lactone
O
S
O
Lawesson reagent
O
RaNi
O
S
S
OCH
3
P P
O
O
Ar
O
Ar
CH
3
O
S
S
~ P S
BF
3
Lawesson reagent
4 10
NaBH
4
JOC, 1983 , 48, 1127.
Ar
O
O
Ar
O
OH
O
2-d
RC-H
RC-OR
see mech-13
O I
HO
I
HO
I
2
/ Pb(OAc)
4
I
2
/ Pb(OAc)
4
/ hv
hv
Angew Chem Int Eng., 1964, 8, 525.
limit: for 5~6 ring neighboring OH group
e
/ Pt
N
O
R'MgBr
N
R'
(2). Organoelectro Chemistry: e
-
/ Pt, R
4
NOTs
N
OH
R
OH
4
NOTs
Ph
Ph
(79 %)
Ph
(3). NCS / MeOH
JOC, 2002 , 67, 4498.
H
H H
H
OCH
3
limit: for allylic alcohol
N
NH
N
O
2
NCS
O
NH
2
N
MeOH
N
H
H
2-e
C
C
C-C-OR
O
C=C-OR
C C
Hg(O C
CF )
32
O
O
+
Hg O
C CF
3
EtOH
NaBH
4
OEt
peracid:
good result
CO
3
H
CO
2
H
CO
3
H
2-e.
1
C
C
ii. HCHO
Prins Rxn
C-C-OR
CF
3
CO
3
H
i. Hg(OCOCF
3
)
2
, ROH // NaBH
4
HCHO (aq)
via:
Synthesis,1980, 871.
peroxybenzoic acid
H
2
O
OH
HCHO
O O
Cl
CO
3
H
O O
OH OH
MCPBA
(m-chloroperoxyb enzoic acid)
stable solid, 85 % (contain MCBA) for safety
2-e.
2
C
C
i. peracid
O
C C
limit for allyl alcohol,
mCPBA
trans-diaxial attack!
OH
O
O
racemic products
ii. via halohydrin: HOBr, H
2
O // K
2
CO
3
HOBr
H
2
O
Sharpless
O
Br
racemic products
CO
2
Et
H
OH
(+)-diethyl tartrate
HO H
CO
2
Et
Br
iii. Sharpless asymmetric epoxidation:
t-BuOOH, Ti(O i Pr)
4
// (+)-diethyl tartrate
iv. t -BuOOH, Mo(CO)
6
HOBr generation: NBS + H
2
O + DMSO
O
stereoselective
HO
v.
KHSO
5
potassium hydrogen preoxide
convenient, inexpensive, powerful.
vi. H
2
O
2
, t-BuOH, MnSO
4
// NaHCO
3
, pH 8
new, cheap,, simple, green chemistry
HO
2
C
HO
chiral source
JOC, 1980, 45, 4758.
JOC, 1982, 47, 2670.
O
JOC, 2001, 66, 521.
conversion:
O
OH
O
JACS, 2001, 123, 2933.
HO
2
C
HOAc
OAc
2-e.
3
C
C
Br
2
/ ROH
O
C=C-OR
OH
Br
2
O
O
via:
Heterocyclic Chem, 1990, 27, 583.
Br
OAc
OSO
2
Me
OH
OSO
2
Me
O
O
H
2-f
C C N
ROH / HCl
C-C-OR
Et C N
EtOH
HCl
OEt
Et C OEt
JACS, 1942, 64, 1825.
C-OH
d C-NH
2
e C-OCH
2
OR
f
C-OC(O)R
C-OH
3-
a C-H
b
C-OR
c
C-X
g
h
i
j
C---OH
C=O
C O
C=C
[PhI(OAc)-O]
2
-Mn(TPP)
JACS, 1983, 105, 2920.
JACS, 1983, 105, 3515.
OH
3-a
C-H
H
OH
NO
2
3-a.
1
e
H
2
O
-
R
Se
O
R
SeO
2
R
OH
O
H
HO
(1). [PhI(OAc)-O]
2
-Mn(TPP)
(2). organic electrochemistry
(3). X
2
/ hv // OH
-
indirect
R
Se
OH
NH
2
OH
R
H
2
O
O
Se
Se(OH)
R
OH
3-a.
2
H
SeO
2
JACS, 1972, 94, 7154.
OH
for allyl H:
H
O
Ph
Me
3
SiCl
Ph
OSiMe
3
OH
2
MCPBA
Ph
OSiMe
3
O
O
3-a.
3
O
H
O
OH
Ph
O
JOC, 1975, 40, 3427.
1. Me
3
SiCl
(1) Me
3
SiCl // MPCBA//H
3
O
+
2. MCPBA
Ph
O
OH
OSiMe
3
H
3
O
Ph
OH
OH
RO
Ph
OH
(2). O
2
, LDA, (EtO)
3
P
RO
O
2
, LDA,
CO
2
R
(EtO)
3
P
RO
OH
CO
2
R
via:
RO
O O
O
P
OEt
OEt
JACS, 1975, 97, 6909.
3-b
C-OR C-OH
i. TMSI
ii. BF
3
-Et
2
O // R-SH (or HS-CH
2
CH
2
-SH)
iii. BBr
3
/ CH
2
Cl
2
, 0-10 C
RCH
2
-O-CH
3
Me
3
Si-I
- I
-
RCH
2
O
SiMe
3
CH
3
I
-
RCH
2
-O-SiMe
3
- CH
3
I
RCH
2
-OH
application: deprotecting
(1). Me: RC-OCH
3
RCH
2
-O-CH
3
BF
iv. AlCl
3
/ RSH
v.
N
H
-
THL, 2001, 42 , 9207.
vi.
N
3
RSH
RCH
2
O
BF
3
CH
3
- RSCH
3
RCH
2
-OH
Cl
/ heat
/ LiI, heat
MeO CO
2
Me
AlCl
3
3
HO
SH
odorless
CO
2
Me
OCH
3
+
OH
O
O C
heat
N
H Cl
-
- CH
3
Cl
OH
CH
(CH )
2 11
(2). PhCH
2
-
RC-OCH
2
Ph = RC-OBZl = RC-OBn
(3). allyl:
i. H
2
/ Pd-C
ii.
Cl
O
CN
, OH
-
O CH
2
O CH
2
H
2
/ Pd-C
- toluene
OCH
3
[O]
RC-OCH
2
CH=CH
2
Cl
CN
O
OCH
3
OH
-
OH
RhCl(PPh
3
)
3
, H
3
O
+
JOC, 1973 , 38, 3224.
RhCl(PPh
3
)
3
H
3
O
+
H
O
- EtCHO
(4). t-Bu:
RC-OtBu
i. TFA (CF
3
CO
2
H)
ii. HBr / HOAc
iii. TMS-I
need stronger acid
H
O
CF
3
CO
2
H
H
O
OH
H
OH
O
- Me
3
C
+
OCOCF
3
(5). trityl:
RC-OCPh
3
= RC-OTr
triphenylmethyl
i. HOAc: weak acid: good leaving group
ii. H
2
/ Pd-C: reserve, too strong, might affect other group
H
O CPh
3
HOAc
- Ph
3
C
H
OH
(6). silyl: RC-OSiR
3
-SiMe
3
-SiBuMe
2
-SiBuPh
2
i. F
-
: HF, Py-H
+
F
-
; n-Bu
4
N
+
F
-
Si - F: 140 Kcal/mol
OR
TMG
CH
3
CN
1h
R = TBDMS, TBDPS, Ac
OH
NH
ii. mild base: not for TBDPS
organic base: TMG Organic Letters, 2003, 5, 209.
iii. mild acid: only for TMS, not for TBDMS, TBDPS
TMG:
N
N
1,1,3,3-Tetramethylguanidine
if HOBr: OK for TMDMS
JOC, 1987 , 52, 4973.
3-c
C-X
C-OH
not practically useful: R-OH cheaper than R-X
(1). OH
-
(3). Ag
2
O / H
2
O
(2). KO
2
/ DMSO
JOC, 1975, 40, 1678.
THL, 1975, 3183.
3-d
C-NH
2
C-OH
NH
2
NO
+
+ -
N
2
X
OH
H
3
O
+
(1). HNO
2
// H
3
O
+
NH
2
Na
2
[Fe(CN)
5
(NO)]
RO
2
C
(CH
2
)
3
CHR
K
2
CO
3
/ H
2
O
(2). Na
2
[Fe(CN)
5
(NO)] / K
2
CO
3
/ H
2
O
OH
RO
2
C
(CH
2
)
3
CHR
JOC, 1986, 51, 3913.
H
3
O
+
O
O
O
O
+
HO OH
3-e
R-OC(O)R
R-OH
H
OMe
OMe
H
3
O
+
H
+
MeOH
(1). Symmetry:
ketal: use H
3
O
+
acetal: use H O
3
+
H
3
O
+
RO-CH
2
OCH
3
RO-H
CH
3
OCH
2
Cl
RO-CH
2
OCH
2
CH
2
OCH
3
H
3
O
+
RO-MOM highly toxic, world top 10 killer, discard
RO-H not toxic
(2). unsymetry:
RO-MOM
+
JOC, 1984, 49, 3912.
i. H
3
O; ii. HCl / MeOH; iii. BBrMe
2
RO-CH
2
SCH
3
CH
3
OCH
2
CH
2
OCH
2
Cl
H
3
O
+
RO-H
not dangerous
RO-MEM
i. H
3
O
+
; ii. ZnBr
2
/ CH
2
Cl
2
; iii. BBrMe
2
HgCl
2
/ CH
3
CN (aq.)
p-TsOH / MeOH
CH
3
SCH
2
Cl
SO
3
H
SO
3
H
O
RO-MTM
RO-THP
R O
O
O
H
3
O
+
RO-H
p-TSOH
CH
3
(p-toluenesulfonic acid)
THP: tetrahydropyran
p-TSOH
or CSA
CSA
(camphorsulfonic acid)
actually, acetal exchange rather than hydrolysis
3-f
O
R' C O R
R OH
common esters:
formate = HCO
2
R ------------------------ KHCO
3
(or K
2
CO
3
, or NH
3
) / MeOH
trifluoroacetate = CF
3
CO
2
R ------------ KHCO
3
(or K
2
CO
3
, or NH
3
) / MeOH
(1). base: KHCO
3
(or K
2
CO
3
, NH
3
) / MeOH; NaOH (1 %, or 0.5 N)
acetate = CH
3
CO
2
R = ROAc --------- KHCO
3
(or K
2
CO
3
, or NH
3
) / MeOH
(2). acid: H
3
O
+
benzoate = PhCO
2
R = ROBz ----------- NaOH (1 %) / MeOH
pivalate = tBu-CO
2
R = ROPv -------- NaOH (0.5 N) / EtOH
OH
OH
Na / NH
3
(3). RED:
electron:
i LiAlH
4
hydride:
ii. NaAlH
2
(OCH
2
CH
2
OCH
3
)
AGIEE,
2002, 41, 3028.
selectivity:
HO
CO
2
CH
3
NaAlH
2
(OCH
2
CH
2
OCH
3
)
2
HCl
MeOH
O
O
HO
LAH
O
O
CH
3
O
2
C
C
6
H
6
, r.t.
3-g
C OH
Mitsunobu inversion
C OH
Synthesis, 1981, 1.
JOC, 1987, 52, 4235.
O
O
(or K
2
CO
3
/ MeOH)
HO
OH
PPh
3
/ DEAD / RCO
2
H // OH
-
P-TsOH
MeOH
O
O
HO
PPh
3
/ DEAD
*
*
PhCO
2
H
HO
PPh
3
EtO
2
C N N
CO
2
Et
ROH
EtO
2
C
N NH
EtO
2
C N NH CO
2
Et
PPh
3
CO
2
Et
*
PhCO
2
H
O
Ph C
*
OR
-
OH
*
R-O-H
Ph P O R
Ph
Ph
3-h
C O
C OH
LAH ------------ almost all: ald, ketone, acie, ester, acyl X, anhydride
NaBH
4
--------------- not for acid, ester (but LiBH
4
work for ester)
B
2
H
6
-----------------
not for ester, acyl X, anhydride;
solvent: THF, SMe
2
O
Ph
NO
2
(1).
regioselective:
O
BH
3
/ THF
reflux 5 d
OH
99.5 % trans
JOC, 2001 , 66 , 7514.
H OH
NO
2
(2).
stereoselective:
from top:
LiAlH
4
; NaBH
4
; Na / NH
3
from bottom:
Al (O iPr)
3
/ i PrOH -----------
Synthesis, 1994 , 1007.
Meerwein-Pondorf-Verley rxn
O
BH
3
/ SMe
2
Ph
JOC, 2003, 68 , 2030.
H
LAH
OH
regioselectivity determined by reactivity.
reactivity: ald > ketone > ester
IrCl
4
/ iPrOH / P(OMe)
3
------
Henbest rxn
LiBH( secBu)
3
------------------
H. C. Brown
JACS, 1972, 94 , 7159.
O
Al(O i Pr)
3
O
+
H
Al
O
O Al(O i Pr)
2
OiPr
OiPr
O
H
OH
H
(3).
HCHO reagent:
HCHO / KOH
HCHO / Ca(OH)
2
Me
JACS, 1935, 511, 903.
, 1925 , 4, 53.
HCHO
CHO
Me
KOH
HCHO
CH
3
CHO
Ca(OH)
2
C(CH
2
OH)
4
O
IrCl
4
generate acetone
OH
IrCl
3
OH
H
opposite to Oppenauer oxidation
OH
O
JCS, 1969 , 1653.
JCS, 1970 , 785.
OH
[H]
+
OH
JACS, 1978, 100, 2226.
THL, 2000, 41, 5631.
49%
trace
Luche Reduction
NaBH
4
NaBH
4
/ CeCl
3
51%
99%
influence of the lanthanide on the regiochemistry
3-i
C O
C OH
R
3
B
C O R
R
B
R
C
O
R
3
C
B
O
O
R
B
R
H
2
O
2
OH
R
3
C
O
B
O
O
C
R
R
O
O H
R
3
C
B
O
R
C R
R
3
C B O
HOCH
2
CH
2
OH
R
3
B, HOCH
2
CH
2
OH // H
2
O
2
// NaOH
JOC, 1986 , 51, 4925.
O
O B
O
H
2
O
R
3
C OH
3-j
C C
C OH
RCH C
R
R
Hg(OAc)
2
R
R CH C
Hg
OAc
OH
R
NaBH
4
R
R CH C
H OH
R
Hg (OAc)
2
: toxic, hard to remove
H
2
O
2
: dangerous,
skin whiten, metal decompose
3-j.
1
C C
C OH
H
2
O
oxymercuration - demercuration:
(1). H
3
O
+
hydration:
B
2
H
6
hydroboration:
H
B
(40%-60%)
H
H
2
O
2
-
B
OH
B
R
O O H
R
H
2
O
OBR
2
(2). Hg(OAc)
2
, H
2
O // NaBH
4
OH
(3). B
2
H
6
, H
2
O
2
/ OH
-
, H
2
O
OH
cis
cis
tran
cis
+
tran
JCS, 1946, 2988.
OH
OH
OH
3-j.
2
C C
C C
(1). KMnO
4
/ NaOH
(2). OsO
4
(3). H
2
O
2
/HCO
2
H
(4). Na / EtOH
OH OH
JACS, 1945, 67, 1786.
Ann, 1949, 561, 165.
3-k
OH OH
O
OH O
practice
JOC, 1967, 32, 3452.
OH OH
OH
OH
OH
OH
OH
O
HO
OH
OH
OH
MeOH
H
+
OH
O
HO
OMe
OBn
O
OMe
OBn
H
3
O
+
OBn
O
OH
OBn
OBn
OBn
H
O
H
PhCH
2
-Br
OH
OH
BnO
O
OBn
BnO
BnO
OBn
OBn
LAH
OBn
OH
OH
Ph
3
C-Cl
BnO
OBn
OH
OTr
CrO
3
BnO
OBn
OH
O
OH
OH
OH
OBn
Py
OBn
O
BnO
OTr
OBn
OH
OBn
OBn
OBn
1', 2' alcohol
ROBn
ROTr
ROH
ROH
O
H
2
OH
chemistry:
hemiacetal
ROH
ROH
Pd-C
OH
OH
OH
C-N
4-
a
b
c
d
e
4-a
C-H
not a very useful reaction
C-H
f
C-N
g
C-X
h
C-OH
i
C=O
C-N
C=C
C N
C(O)X
C-C(O)X
Compare nomenclature class:
R C NH
2
R
3
C NH
2
primary
tertiary
secondary R C NHR
RC
OH
R
2
C OH
R
3
C OH
R C NR
2
TPP
N
N
N
N
Ph
SO
2
NH
2
Ph I
OAc
OAc
O
S N I Ph
O
Fe (TPP)Cl
O
S NH
2
O
(insertion)
NH
S
O
O
(1). nitrene insertion process: PhI(OAc)
(2). PhI=NTs
JOC, 2000 , 65, 7858.
2
/ Fe (TPP)Cl
NHTs
PhI NTs
Ru cat
(3). nitrogen cation radical
(via Hofmann - Loeffler - Freytag)
H
COOH
JACS, 1959, 81, 5209.
NH
2
N
NCS
H
2
SO
4
Me
2
N
h
Me
2
N
O
C N N N
N C O
H
2
O
O
N C OH
NH
2
H
O
C
O
O
C
CH
3
AcO
H
AcO
COOH
1. SO
2
Cl
2
2. NaN
3
N C
NHCHO
K
2
CO
3
MeOH
TsCl
HOAc
NHCHO
Me
2
NH
DMF
TsO
Cl
N CH
3
H
NHCHO
NHCH
3
CO
2
Cl
N CH
3
NCS
H
+
Cl
N CH
3
H
h
H
N CH
3
H
TsO
H
N CH
3
H
HOAc
1. LAH
2. H
2
/ Pt
Me
2
N
N
Cl
N
CH
3
H
Cl
N CH
3
H
Me
2
N
-b C-N
4
4-b.1
4-b.2
C-NH
2
C NH
2
CF CO H // Fe / HOAc
3 3
NH
2
NH
2
NO
2
H
NH
2
special case, limit for axial to equitorial NH
2
CF
3
CO
3
H
H
NO
2
-
O
+
N
-
O
C
NH
2
RC N
Z
NH
2
RC NH
2
RC NH
2
1.
Fe
3
(CO)
12
/ CH
3
OH JOC, 1972, 37, 930.
Fe/HOAc
H
NH
2
NH
2
i
RC NO
2
/ Pd-C
2.
NaBH
4
Vogel's 12.57
1. many reducing agents 3.
Na
2
S
Vogel's 12.58
4.
Sn / HCl
5.
H
2
/ Pt (S)-C
2. organic electrochemistry
ii
RC N
3
RC N
Me
RC NH
2
Vogel's 12.59
NO
2
Fe
3
(CO)
12
/ CH
3
OH
NH
2
reflux 8 hr
JACS, 1965, 87, 2767.
sulfided platium
not affect: aromatic rings, ketones, halides, nitriles, amide, easters
NO
2
Eg-Ni
DMF
rt. 15 hr
OCH
3
NH
2
Eg-Ni: electrogenerated nickel
H
H
H
R C NH
Ph
H
BF
4
Ph
R
H
N Ph
CO
2
Et
-
JOC, 1999, 64, 2301.
1. NaBH
4
; 2. Al (Hg)
OCH
3
+
RC NH
2
H
2
O
2
// Ac
2
O, heat / H
3
O
+
R
C
N N
N
H
N N
N
2
CO Et
2
R
H
N
3
RCH
2
NH
2
RC N CPh
iii
RC N CPh
3
O
RC N
RC N
C
OtBu
O
C OPh
RC NH
2
RC NH
2
H
2
/ Pd-C
1. HOAc; 2. H
2
/ Pd-C
application:
NH
2
R
H
L -
-amino acid
CO
2
H
NaN
3
- TPP
(S
N
2)
1. reduction
R
2. hydrolysis
CO
2
H
NH
2
H
.
RC NH
2
1. TFA; 2. HCl
RC NH
2
H
2
/ Pd-C
N
CH
3
D - -amino acid
O
NH
2
(CH
3
)
3
C O C O N C
BOC ON
H
O
Ph
CN
N C OtBu
TFA
NH
2
1. H
2
O
2
2. Ac
2
O
3. H
2
O
H
N
[BOC-OFF]
BOC-ON [58632-95-4]: 2-( t-butoxy carbonyloxyimino)-2-phenylaceto nitrile
THL, 1975, 4393.
$ 300 / 100 g
NH
2
CO
2
Et
O
Cl C O CH Ph
2
H
O
N C OCPh
BOC-ON
NH-BOC
CO
2
Et
O
NH
2
H
2
/cat
NH C OH
NH
2
O
N CH
3
N
CH
3
Ac2O
O
N
O
H
N
N
OH
N
H
N-oxide
NH
CH
2
Ph
- HCHO
NH
2
H
2
/ Pd-C
N CH
2
OCH
3
NH
CO
2
4b.3 R C N Z
i
R C N R'
RC NC
1. HC(OEt)
3
// NaBH
4
; 2. R
2
CO // NaBH
3
CN
C
1. HCHO / HCO
2
H
JACS, 1933, 55, 4579.
about HC(OEt)
3
: ethyl orthoformate ($ 25 / 1 L), may function as dehydrating agent
原甲酸三乙酯
CH
3
COCH
3
O
OEt
HC(OEt)
3
becomes HCO
2
Et
RC NH
2
R C N
CO
2
Et
H
HO
OH
H
CO
2
Et
O
O
O
old: FeCl
3
, MgSO
4
in Soxhlet extract, reflux 40 hr
new: p-TsOH / HC(OEt)
3
/ EtOH, reflux 5 hr
NH
2
C
2. HCHO // H
2
/ Pd-C
H
NaBH
4
OEt
N
CH
3
HC(OEt)
3
R NH
2
R NH
OEt
OEt
R N CH OEt
HC(OEt)
3
COOH
COOH
-
H
OEt
R NH CH
2
R N CH
2
-
H
R N CH
3
H
NH
2
CO
2
Et
HCHO
HCO
2
H
NMe
2
NH
CO
2
Et
2
N
CH
3
NH
2
O
H C H
CH
3
H
N C
H
H
O
H C O
-
CO
2
NH
CH
3
O
H C H
H
N
O
CH
3
N
CH
3
HCHO
HCOOH
H
-
H C O
CH
3
CO
2
N
N
R-BCl
2
N
ii
-
+
R C N N N
N
N N
B
Cl
Cl
- N
2
R
Cl
N
B
Cl
R
N
H
R
R C N R'
1. RBCl
2
/ base
N
3
BCl
2
NH
NO
2
MeO
2
C
N
3
NaBH
4
CoCl
2
6H
2
O (cat)
rt
-
NO
2
MeO
2
C
NH
2
high yield
mild condition
Synthesis, 1979, 537.
2. NaBH
4
/ CoCl
2
-
6H
2
O
not affect:: NO
2
, C=C, CN, COOR, COOH
4-c C-X
C-N
Ph CH
2
Br
O
1. NH
3
N K
N
2
H
4
O
PhCH
2
NH
2
+
(PhCH
2
)
2
NH
+
O
(PhCH
2
)
3
N
not good, usually contain polyalkylation products
O
N CH Ph
2
Ph CH
2
Br
2. Gabriel:
N K
N
2
H
4
O
O
N
NHNH
2
Gabriel amine synthesis
Ph CH NH
2 2
NHNH
2
3. Delepine
O
N
O
N
N
N
N N
内服后遇酸分解出 HCHO,
N
N
H
2
O
Ph CH
2
Br
N
N
N
N
N
N
N
N
-
commercial available, tetramer of Me
3
N
Ph CH
2
NH
2
4. NaN
3
/ RED
5. Unpolung
i. LAH, NaBH
4
ii. H
2
/ cat
iii Zn / HCl; Al (Hg)
Br
CH
2
Ph
N
N
N
OMe
R Br
Mg
R MgBr
NH
2
Cl
R NH
2
可做尿道消毒剂 , 治膀胱炎
CH
2
Ph
urotropine ( 乌洛托品 )
methenamine (六甲烯胺 )
hexamethylenetetramine (环六亚甲基四胺 )
N
-N
2
i. Mg // NH
2
Cl
ii. Mg // PhSCH
2
-N
3
// KOH
OCH
3
PhS N N N
Br
OMe
N
SPh
OCH
3
H
N
MgBr
N
OCH
3
NH
2
SPh
OCH
3
OCH
3
OMe
OMe
OCH
3
6. CH
3
NH
2
(aq) / EtOH // HCl / Et
2
O
JOC, 1988, 53, 2918.
O
CH
3
NH
2
/ EtOH
HCl / Et
2
O
Cl
O
NHMe
4-d
C-OH
C-N
OH
TSCl
O
N K
O
N
2
H
4
in fact: C-OH C- OTs C-NH
2
1. Gabriel:
NH
2
2. Delepine
3. NaN
3
/ RED
4. CBr
4
, PPh
3
, NaN
3
, DMF // PPh
3
/ THF
JOC, 2000, 65, 7110.
N
R
CBr
4
PPh
3
Br
NaN
3
N R
N N N
N R
PPh
3
THF
NH
2
OH
N R
版权声明:本文标题:2021最新有机化学常见官能团的反应总结 内容由网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://www.roclinux.cn/p/1713923734a657929.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论