admin 管理员组文章数量: 1086019
2024年12月28日发(作者:5g影讯5g天线在线观看视频入口网址大全)
第53卷 第7期
2024年4月
表面技术
SURFACE TECHNOLOGY
·57·
17-4PH不锈钢激光气体渗氮层显微
组织与摩擦学性能
刘礼,邵磊
*
,孙岩茹,崔梓烁,李克伟,李文生
*
111112
(1.山东科技大学 材料科学与工程学院,山东 青岛 266590;
2.西北师范大学 物理与电子工程学院,兰州 730070)
摘要:目的 提高17-4PH马氏体沉淀硬化不锈钢的表面硬度及耐磨性。方法 采用光纤激光器对17-4PH不
锈钢进行激光气体氮化,采用不同激光功率在其表面制备渗氮层。利用光学显微镜(OM)、电子扫描显微
镜(SEM)和X射线衍射仪(XRD)等设备分析渗氮层的显微组织和相组成;借助显微硬度仪测试渗氮层
截面深度方向的硬度;采用多功能摩擦磨损试验机测试基体、渗氮层的摩擦学性能,并通过SEM分析磨痕
形貌,揭示基体与渗氮层的磨损机制。结果 在渗氮前样品组织为回火马氏体,经激光渗氮后样品表面形成
了由板条马氏体组成的熔化区和回火马氏体组成的热影响区构成的渗氮层。经渗氮后,样品的硬度均得到
提高。在激光功率3 000 W下,渗氮层的表面硬度最高,达到了415HV0.2,约是基体硬度的1.2倍,渗氮
层的硬度随着深度的增加呈下降趋势,在深度为2.6 mm处其硬度与基体一致。在回火马氏体向板条马氏体
转变的相变强化,以及氮原子(以固溶方式进入基体)的固溶强化作用下,提高了渗氮层的硬度。经渗氮
后,样品的摩擦因数均高于基体,但渗氮后其磨损量相较于基体有所减少,在激光功率3 000 W下,其磨损
体积最小,相较于基体减少了62%。在激光功率2 500 W下马氏体转变不完全,在激光功率3 500 W下渗氮
层出现了裂纹,都降低了渗氮层的硬度,其耐磨性也随之减小,且都略低于在3 000 W下。磨损机制由渗氮
前的以黏着磨损为主,转变为渗氮后的以磨粒磨损为主。结论 在17-4PH马氏体沉淀硬化不锈钢表面进行
激光渗氮后,其表面硬度和耐磨性均得到提高,在激光功率3 000 W下制备的渗氮层具有较高的表面硬度和
优异的耐磨性。
关键词:激光气体渗氮;17-4PH马氏体沉淀硬化不锈钢;显微组织;表面硬度;摩擦学性能
中图分类号:TG156.8 文献标志码:A 文章编号:1001-3660(2024)07-0057-07
DOI:10.16490/.1001-3660.2024.07.006
Microstructure and Tribological Properties of Laser Gas
Nitriding Layers of 17-4PH Stainless Steel
LIU Li
1
, SHAO Lei
1*
, SUN Yanru
1
, CUI Zishuo
1
, LI Kewei
1
, LI Wensheng
2*
(1. School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China;
收稿日期:2023-03-03;修订日期:2023-10-26
Received:2023-03-03;Revised:2023-10-26
基金项目:国家重点研发计划(2022YFB3809000,2022YFE0121900);山东省重大基础研究项目(ZR2022ZD13);山东省泰山学者项目
(tstp20221127)
Fund:National Key Research and Development Program (2022YFB3809000, 2022YFE0121900); Major Basic Research Project of Shandong
(ZR2022ZD13); Taishan Scholar Project (tstp20221127)
引文格式:刘礼, 邵磊, 孙岩茹, 等. 17-4PH不锈钢激光气体渗氮层显微组织与摩擦学性能[J]. 表面技术, 2024, 53(7): 57-63.
LIU Li, SHAO Lei, SUN Yanru, et al. Microstructure and Tribological Properties of Laser Gas Nitriding Layers of 17-4PH Stainless Steel[J].
Surface Technology, 2024, 53(7): 57-63.
*通信作者(Corresponding author)
·58· 表 面 技 术 2024年4月
2. College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China)
ABSTRACT: 17-4PH martensitic precipitation-hardening stainless steel has excellent comprehensive performance, high
strength, toughness, and good corrosion resistance. As a result, it has wide application in industries such as aerospace,
petrochemical, and nuclear. However, the poor wear resistance critically limits its application in friction conditions. Nitriding is
a common surface protection process in which nitrogen atoms diffuse into the alloy matrix to harden the surface and improve
wear resistance. This study aims to enhance the surface hardness and wear resistance of 17-4PH martensitic precipitation-
hardening stainless steel through laser gas nitriding. Laser gas nitriding of 17-4PH stainless steel was carried out using a fiber
laser in a nitrogen atmosphere. Nitrided layers were then formed on the steel surface using various laser powers. The
microstructure and phase composition of the nitriding layer were analyzed by optical microscopy (OM), scanning electron
microscopy (SEM), and X-ray diffractometer (XRD). The hardness of the nitriding layer was evaluated along the depth direction
of the cross-section with a microhardness tester. The tribological properties of the substrate and the nitriding layer were tested
with a multi-functional friction and wear tester. The wear scar morphology was analyzed by SEM to investigate the wear
mechanism of both the substrate and the nitriding layer. The effect of laser gas nitriding on the substrate's microstructure,
hardness, and wear resistance was systematically studied. Before nitriding, the sample tissue was tempered martensite. After
laser nitriding, a nitrided layer was formed on the sample surface. This layer consisted of a melting zone of slate martensite and
a heat-affected zone of tempered martensite. The hardness of the samples after nitriding was improved. The surface hardness of
the nitrided layer was the highest at 3 000 W, reaching 415HV0.2, which was approximately 1.2 times higher than that of the
substrate. The hardness within the nitrided layer decreased with depth. It was equal to the hardness of the substrate at a depth of
2.6 mm. The hardness of the nitrided layer was increased through two mechanisms: phase transformation strengthening,
specifically the transformation of tempered martensite to slat martensite, and solid solution strengthening, where nitrogen atoms
were incorporated into the matrix in a solid solution mode. The friction factors after nitriding were higher than those of the
substrate, but the wear volume was reduced after nitriding compared with the substrate. The smallest wear volume was observed
at 3 000 W laser power, which was 62% less than that of the substrate. Incomplete martensitic transformation at 2 500 W laser
power and cracking of the nitrided layer at 3 500 W laser power both reduced the hardness of the nitrided layer so that the wear
resistance at 2 500 W and 3 500 W laser power was less than that of the nitrided layer at 3 000 W laser power. The wear
mechanism changed from being dominated by adhesive wear before nitriding to being dominated by abrasive wear after
nitriding. The surface hardness and wear resistance of 17-4PH martensitic precipitation-hardened stainless steel surfaces are
improved by laser nitriding. The nitrided layers prepared at 3 000 W power has high surface hardness and excellent wear
resistance. This makes it suitable for a wide range of applications in frictional conditions.
KEY WORDS: laser gas nitriding; 17-4PH martensitic precipitation-hardening stainless steel; microstructure; hardness of
surface; tribological properties
17-4PH马氏体沉淀硬化不锈钢具有强度高、韧
性良好、抗氧化性良好和耐蚀性良好等优点,被广泛
用于石油化工等领域,但其较差的耐磨性限制了它在
摩擦工况下的应用
[1-4]
。氮化是一种常见的表面防护
工艺,通过将氮元素扩散到金属表面,实现表面硬化,
从而提高材料的耐磨性
[5]
。Liu、Yan等
[6-8]
对17-4PH
钢进行了等离子渗氮处理,研究发现经渗氮后,材料
的硬度是未处理材料的3倍,且其耐磨性也得到提
升,进一步研究了渗氮温度、时间对材料性能的影响,
发现在460 ℃下处理8 h后,材料的耐磨性和耐蚀性
较好。尽管等离子渗氮工艺提高了不锈钢的表面硬度
[9]
,
但等离子较长的渗氮时间提高了工业生产成本,不利
于其工业化应用
[10]
。Michla等
[11]
研究了经气体渗氮处
理后17-4PH钢的微观组织和力学性能,发现材料的表
面硬度达到了1 150HV0.5,相较于基体(380HV0.5)
明显提高。不过,气体渗氮存在氮化效率低、尾气排
放污染环境等问题
[12]
。
激光气体渗氮技术是利用激光热源在富氮气氛
中对钢的表面进行加热,使氮原子与基体发生化学/
冶金反应,从而形成与基体材料以原位冶金方式相结
合的渗氮层。激光气体渗氮技术具有处理时间短、可
控性高和不改变材料整体性能等优点
[10,13-15]
,广泛用
于表面工程领域。Shin等
[16]
采用二极管激光对AISI P21
模具钢进行了激光硬化和激光渗氮处理,经激光渗氮
处理后,在距离样品表面15 µm深度内生成了氮化
铝,经激光硬化后样品的表面硬度无变化,经激光渗
氮后样品的表面硬度从409HV增至536HV,激光氮
化在提高样品表面硬度的同时也提高了其耐磨性。
第53卷 第7期 刘礼,等:17-4PH不锈钢激光气体渗氮层显微组织与摩擦学性能 ·59·
李文生等
[17]
采用半导体激光,对Ti-6Al-4V合金进行
了激光渗氮,研究了不同热输入条件对渗氮层结构和
性能的影响。结果表明,随着热输入的增大,TiN相
的数量和渗氮层的厚度随之增加;当热输入超过临界值
时,渗氮层会产生大量裂纹;当热输入在210~275 J/mm
内时,钛合金表面的渗氮层连续完整且无裂纹,其表
面硬度比基材硬度提高了2.5倍。以上研究表明,激
光氮化能够显著提高基体表面的硬度和耐磨性。相较
于半导体和CO
2
激光,采用光纤激光具有更好的稳定
性,且产生的辐射波长可被铁基材料有效吸收,更适
用于碳钢
[18-19]
。
为了进一步提高17-4PH钢的表面硬度和耐磨
性,这里采用光纤激光器对17-4PH钢进行激光气体
氮化,通过OM、SEM、XRD分析激光渗氮处理后
其微观结构和相组成的变化情况。此外,通过摩擦磨
损试验研究不同功率下激光渗氮处理对材料摩擦学
性能的影响。
1 实验
1.1 材料及预处理
选用经过1 040 ℃固溶处理和620 ℃时效处理的
17-4PH马氏体沉淀硬化不锈钢(0Cr17Ni4Cu4Nb),其
化学成分如表1所示。试验样品的尺寸为100 mm×
500
#
、1000
#
、1500
#
、
100 mm×10 mm,依次使用400
#
、
2000
#
砂纸打磨,随后用丙酮清洗,以去除杂质和油
污,经干燥后备用。
表1 17-4PH马氏体沉淀硬化不锈钢的化学成分
Tab.1 Chemical composition of 17-4PH martensitic precipitation-hardening stainless steel
Element C Cr Ni Mn Si Cu Nb Fe
Mass fraction/%
≤0.07
15.0-17.5 3.0-5.0
≤1.0≤1.0
3.0-5.0 0.15-0.45 Bal.
1.2 渗氮层的制备
采用光纤激光器(YLS-4000,IPG,德国),其
最大输出功率为4 000 W,波长为1.07 μm。六轴联动
机器人的位置精度为0.1 mm(KR500 R2830,KUKA,
德国),氮气流量为25 L/min。采用如表2所示的参
数对试样进行激光气体氮化。
表2 激光参数
Tab.2 Laser parameters
Laser power/W
2 500
3 000
3 500
Scanning speed/(mm·s
−1
) Overlap/%
10
10
10
40
40
40
次,取其平均值。采用 CETR-UMT-3MO 多功能摩
擦磨损试验机测试基体和渗氮层的摩擦学性能。试样
尺寸为10 mm×10 mm×5 mm,载荷为10 N,摩擦时
间为60 min,摩擦速度为10 mm/s ,划痕长度为5 mm,
选取直径为9.5 mm的Al
2
O
3
陶瓷球作为对磨球。选
用 Zeta-20三维形貌仪测量磨损体积。
2 结果与分析
2.1 渗氮层微观组织
在激光功率为3 000 W时,渗氮层截面的微观组
织如图1所示。由图1a可知,基体组织为回火马氏
体。如图1b所示,激光渗氮熔化层的深度为1 350 μm,
渗氮层完整、无裂纹,表明所选取的工艺参数适用于
17-4PH不锈钢。熔化区组织为板条马氏体,与基体
的回火马氏体组织不同,其原因是样品在激光渗氮处
理过程中,相当于对样品进行了一次激光淬火,在激
光作用下样品表面的温度迅速升高,超过了合金熔
点,在样品表面形成了熔化区。随后,熔化区温度快
速下降,熔化区具有较大的温度梯度和较高的冷却速
度,在快速淬火过程中渗层组织由回火马氏体转变为
热影响区的温度梯度和冷却速度都
板条马氏体
[18, 20]
。
低于熔化区,从图1c~d可以看出,熔化区的组织与
热影响的组织明显不同,热影响区的组织依然是回火
马氏体。
基体及渗氮层(3 000 W)表面的XRD图谱如图
2所示。由图2a可以看出,基体和渗氮层的主要物
相均为马氏体,在基体中含有少量的残余奥氏体,在
渗氮层中只有马氏体。原因是经激光处理后,样品的
冷却速度较快,抑制了残余奥氏体的生成。如图2b
1.3 结构表征与性能测试
经渗氮处理后,采用线切割沿垂直于激光扫描方向
切取金相试样,并采用400
#
~2000
#
砂纸打磨试样,然后
采用金刚石抛光膏进行抛光。采用20 mL HCI+12.5 mL
C
2
H
5
OH+15 mL H
2
O+2.5 g CuCl的混合溶液侵蚀20 s,
得到金相试样。
采用D/Max 2500PC型X射线衍射仪分析渗氮层
和基材的物相,Cu靶Kα辐射,管电压为40 kV,管
电流为100 mA,扫描速率为4 (°)/min,扫描范围2θ
为20°~100°。将渗氮处理后的样品经打磨、抛光、腐
蚀处理后,采用Axio Lab A1光学显微镜和Nova Nano
SEM 450场发射扫描电子显微镜对渗氮层的组织结
构、磨痕形貌进行观察分析。采用 FM-700/SVDM-4R
型显微硬度计测量基体表面、渗氮层截面的硬度,压
入载荷质量为200 g,加载时间为15 s,重复测量3
·60· 表 面 技 术 2024年4月
图1 微观组织照片
Fig.1 Microstructure image: a) substrate; b) nitriding layer cross section at
3 000 W power; c) transformation zone; d) heat-affected zone
图2 XRD图谱
Fig.2 XRD pattern: a) 3 000 W power; b) partial magnification
所示,在2θ为81.9 °时,渗氮层的衍射峰相较于基体
区的宽度分别为1 000、1 500、1 400 μm,热影响区
[21]
左偏了0.1°,根据布拉格方程,得到式(1)
。
的宽度分别为900、1 000、1 000 μm。随着激光功率
2dsin
n
(1)
的升高,样品熔化区和热影响区的范围随之扩大。当
式中:d为晶面间距;θ为入射X射线与晶面的
激光功率达到3 000 W后,熔化区和热影响区的范围
夹角;λ为X射线的波长;n为衍射级数。
无明显变化。
θ向左偏移,表明晶面间距增大,原因可能与氮
在3种激光功率下,热影响区的硬度仍高于基体
[22-23]
。
原子通过固溶的方式进入基体有关
的硬度。原因是在激光处理时,热影响区经历了二次
时效,第二相的析出增多,使得材料的硬度增大
[4]
。
2.2 渗氮层显微硬度分布
弥散的ε-Cu是17-4PH钢中第二相强化的主要来源,
渗氮样品截面处硬度分布曲线如图3所示,相邻
经激光渗氮处理后,细小的铜颗粒可能在基体中溶解
硬度点的间隔为100 μm。从图3可以看出,渗氮层
或粗化,导致硬度突然下降。如图3b所示,硬度在
硬度随着深度的增加呈下降趋势。在2 500、3 000、
500 μm处出现突降
[26-28]
。
3 500 W下,渗氮层的表面硬度分别为385HV0.2、
2.3 摩擦学性能
410HV0.2、396HV0.2,相较于基体的硬度(340HV0.2)
明显提升。这是因为渗层表面由含有大量位错的板条
渗氮层和基体与Al
2
O
3
对磨球对磨时的摩擦因数
马氏体构成,具有较高的硬度,且氮原子以固溶方式
曲线如图4a所示。可以看出,经历初始磨合期后,
进入基体,发挥了固溶强化的作用,进一步提高了材
渗氮层的摩擦因数随着时间的延长逐步增大,且均未
料的硬度。当激光功率为2 500 W时,由于激光功率
出现摩擦因数显著增大的剧烈磨损阶段。基体的平均
较小,使得基体表面温度梯度较小,导致马氏体转变
摩擦因数为0.73,在激光功率2 500、3 000、3 500 W
下,渗氮样品的平均摩擦因数分别为0.78、0.87、0.78。
不完全,从而造成硬度下降。在激光功率为3 500 W
基体的摩擦因数低于渗氮样品的摩擦因数,在激光功率
时,样品被加热到较高温度,在激光熔化过程中产生
3 000 W下样品的摩擦因数相对最高。渗氮层和基体
了应力,沿激光扫描方向的拉伸应力超过其临界值,
的磨损量如图4b所示,基体的磨损体积为5.8×10
−2
mm
3
,
导致裂纹产生,也使得样品的硬度降低
[24-25]
。当激光
在激光功率2 500、3 000、3 500 W下,渗氮层的
功率为3 000 W时,所制备的渗氮层质量较好,且表
磨损体积分别为5.2×10
−2
、2.2×10
−2
、4.1×10
−2
mm
3
,渗
面硬度较高。
氮层的磨损率均小于基体的磨损率,且在3 000 W下渗
在激光功率为2 500、3 000、3 500 W时,熔化
第53卷 第7期 刘礼,等:17-4PH不锈钢激光气体渗氮层显微组织与摩擦学性能 ·61·
氮层的磨损量相对最小,相较于基体,其磨损量减少了
62%,表明激光气体渗氮提高了基体的耐磨性,且在
3 000 W下提高得最显著。根据Archard磨损定律,磨
因此随着硬度的升高,样品的
损体积与硬度成正比
[29]
,
磨损体积随之减小,在激光功率3 000 W下样品的硬度
相对最高,对应相对最低的磨损体积。随着硬度的增大,
样品在滑动过程中也需要克服更高的极限剪切强度,所
受的摩擦力也增大,最终导致摩擦因数增大
[30]
。
17-4PH钢渗氮层和基体摩擦表面的微观形貌如
图5所示。可以看出,无论是渗氮层还是基体,摩擦
图3 不同激光功率下渗氮样品截面处的硬度分布曲线
Fig.3 Hardness distribution curve at cross section of nitriding sample under different power
图4 渗氮层、基体的摩擦因数随时间的变化曲线(a)及渗氮层、基体的磨损体积(b)
Fig.4 Coefficient of friction versus time curve of nitriding layer and substrate (a),
wear volume of nitriding layer and substrate (b)
图5 基体和不同激光功率下的渗氮层的表面磨损形貌
Fig.5 Surface wear morphology of substrate and nitriding layer under different laser
power: a) substrate; b) 2 500 W; c) 3 000 W; d) 3 500 W
·62· 表 面 技 术 2024年4月
表面都存在犁沟和材料剥落现象。根据这些磨损特征
可以判断,渗氮层和基体的主要磨损机制为磨粒磨损
和黏着磨损。如图5a所示,基体材料的表面出现了
许多因黏着磨损而形成的剥落现象,相较于渗氮层,
基体的硬度较低,导致其黏着磨损更严重
[31-32]
。同时,
黏着磨损产生的磨屑在摩擦过程中起到了润滑作用,
从而降低了摩擦因数。从图5b~d可知,经激光渗氮
处理后,虽然样品发生了磨粒磨损和黏着磨损,但相
较于基体,其整体的磨痕形貌较平整,且黏着磨损较
少,耐磨性得到增强,高硬度的对磨球仍在其表面形
成了犁沟。在激光功率3 000 W下,渗氮层的黏着磨
损量最少。基体和不同激光功率下渗氮层的磨损形貌
变化与图4b中磨损体积的变化相对应。
3 结论
1)渗氮层熔化区的组织主要为板条马氏体,热
影响区的组织为回火马氏体。在不同激光功率下制备
的渗氮层的硬度均高于基体的硬度,且在3 000 W下
渗氮层的硬度相对最高(415HV0.2),约是基体材料
硬度的1.2倍。
2)在熔化区产生的含有大量位错的板条马氏体,
以及氮元素固溶强化的共同作用下,提高了渗氮层的
硬度。
3)渗氮层的高硬度使其耐磨性得到提高,在激
光功率为3 000 W下,试样的耐磨性得到了明显提升,
磨损量相较于基体降低了62%。原因在于,当激光功
率较低(2 500 W)时,马氏体转变不完全,渗氮层硬
度较低;当激光功率较高(3 500 W)时,渗氮层出现
了裂纹,上述缺陷都不利于提高渗氮层的摩擦学性能。
参考文献:
[1] BAI B, HU R, ZHANG C Y, et al. Effect of Precipitates
on Hardening of 17-4PH Martensitic Stainless Steel
Serviced at 300 ℃ in Nuclear Power Plant[J]. Annals of
Nuclear Energy, 2021, 154: 108123.
[2] ESFANDIARI M, DONG H. The Corrosion and Corrosion–
Wear Behaviour of Plasma Nitrided 17-4PH Precipitation
Hardening Stainless Steel[J]. Surface and Coatings
Technology, 2007, 202(3): 466-478.
[3] FACCHINI L, VICENTE N Jr, LONARDELLI I, et al.
Metastable Austenite in 17-4 Precipitation-Hardening
Stainless Steel Produced by Selective Laser Melting[J].
Advanced Engineering Materials, 2010, 12(3): 184-188.
[4] BAHRAMI BALAJADDEH M, NAFFAKH-MOOSAVY
H. Pulsed Nd: YAG Laser Welding of 17-4 PH Stainless
Steel: Microstructure, Mechanical Properties, and Welda-
bility Investigation[J]. Optics Laser Technology, 2019,
119: 105651.
[5] YU H J, TAN T Y, WU W, et al. Molecular Dynamics
Study of Laser and Plasma Nitriding of Titanium[J].
Journal of Manufacturing Science and Engineering, 2013,
135(3): 034501.
[6] LIU R L, YAN M F. The Microstructure and Properties of
17-4PH Martensitic Precipitation Hardening Stainless
Steel Modified by Plasma Nitrocarburizing[J]. Surface
and Coatings Technology, 2010, 204(14): 2251-2256.
[7] LIU R L, YAN M F. Improvement of Wear and Corrosion
Resistances of 17-4PH Stainless Steel by Plasma Nitroc-
arburizing[J]. Materials & Design, 2010, 31(5): 2355-
2359.
[8] YAN M F, LIU R L, WU D L. Improving the Mechanical
Properties of 17-4PH Stainless Steel by Low Temperature
Plasma Surface Treatment[J]. Materials & Design, 2010,
31(4): 2270-2273.
[9] 孙璐, 曹驰, 杜金涛, 等. AISI 300系列奥氏体不锈钢
渗氮层组织和性能研究[J]. 表面技术, 2023, 52(1):
421-431.
SUN L, CAO C, DU J T, et al. Organization and Proper-
ties of Nitriding Layer for AISI 300 Series Austenitic
Stainless Steel[J]. Surface Technology, 2023, 52(1): 421-
431.
[10] SHIN W S, SIM A, BAEK S, et al. Microstructural
Characterizations and Wear and Corrosion Behaviors of
Laser-Nitrided NAK80 Mold Steel[J]. Surface and
Coatings Technology, 2021, 410: 126956.
[11] MICHLA J R, RAVIKUMAR B, RAM PRABHU T, et al.
Effect of Nitriding on Mechanical and Microstructural
Properties of Direct Metal Laser Sintered 17-4PH Stainless
Steel[J]. Journal of Materials Research and Technology,
2022, 19: 2810-2821.
[12] YAN G H, LU S L, ZHANG M L, et al. Wear and
Corrosion Behavior of P20 Steel Surface Modified by Gas
Nitriding with Laser Surface Engineering[J]. Applied
Surface Science, 2020, 530: 147306.
[13] 高凤琴, 李文生, 武彦荣, 等. Ti-6Al-4V合金光纤激光
改性层摩擦学性能与腐蚀行为[J]. 中国有色金属学报,
2020, 30(12): 2832-2844.
GAO F Q, LI W S, WU Y R, et al. Friction Properties and
Corrosion Behavior of Fiber Laser Modified Layer on
Ti-6Al-4V Alloy[J]. The Chinese Journal of Nonferrous
Metals, 2020, 30(12): 2832-2844.
[14] SIM A, PARK C, KANG N, et al. Effect of Laser-Ass-
isted Nitriding with a High-Power Diode Laser on Surface
Hardening of Aluminum-Containing Martensitic Steel[J].
Optics Laser Technology, 2019, 116: 305-314.
[15] KUSINSKI J, KAC S, KOPIA A, et al. Laser Modific-
ation of the Materials Surface Layer – a Review Paper[J].
Bulletin of the Polish Academy of Sciences: Technical
Sciences, 2012, 60(4): 711-728.
[16] SHIN W S, YOO H J, KIM J H, et al. Effect of Laser
Heat-Treatment and Laser Nitriding on the Microstruc-
tural Evolutions and Wear Behaviors of AISI P21 Mold
第53卷 第7期 刘礼,等:17-4PH不锈钢激光气体渗氮层显微组织与摩擦学性能 ·63·
Steel[J]. Metals, 2020, 10(11): 1487.
[17] 李文生, 高凤琴, 武彦荣, 等. 半导体激光热输入对渗
氮层结构和性能的影响[J]. 表面技术, 2019, 48(10):
116-124.
LI W S, GAO F Q, WU Y R, et al. Effect of Diode Laser
Heat Input on Structure and Properties of Nitrided
Layer[J]. Surface Technology, 2019, 48(10): 116-124.
[18] QIU F, UUSITALO J, KUJANPÄÄ V. Laser Transform-
ation Hardening of Carbon Steel: Microhardness Analysis
on Microstructural Phases[J]. Surface Engineering, 2013,
29(1): 34-40.
[19] 张新, 舒世立, 佟存柱. 3 μm波长Er: ZBLAN光纤激光
器研究进展[J]. 光电工程, 2019, 46(8): 190070.
ZHANG X, SHU S L, TONG C Z. Research Progress of
Er: ZBLAN Fiber Lasers at the Wavelength of 3μm[J].
Opto-Electronic Engineering, 2019, 46(8): 190070.
[20] CHEN Z K, ZHOU T, ZHAO R Y, et al. Improved
Fatigue Wear Resistance of Gray Cast Iron by Localized
Laser Carburizing[J]. Materials Science and Engineering:
A, 2015, 644: 1-9.
[21] LIU Y F, ZHUANG S G, LIU X B, et al. Microstructure
Evolution and High-Temperature Tribological Behavior
of Ti
3
SiC
2
Reinforced Ni60 Composite Coatings on 304
Stainless Steel by Laser Cladding[J]. Surface and
Coatings Technology, 2021, 420: 127335.
[22] BRÜHL S P, CHARADIA R, SIMISON S, et al. Corro-
sion Behavior of Martensitic and Precipitation Hardening
Stainless Steels Treated by Plasma Nitriding[J]. Surface
and Coatings Technology, 2010, 204(20): 3280-3286.
[23] LV J, ZHOU J Z, ZHANG T, et al. Microstructure and
Wear Properties of IN718/WC Composite Coating Fabric-
ated by Ultrasonic Vibration-Assisted Laser Cladding[J].
Coatings, 2022, 12(3): 412.
[24] ABBOUD J H, FIDEL A F, BENYOUNIS K Y. Surface
Nitriding of Ti-6Al-4V Alloy with a High Power CO
2
Laser[J]. Optics & Laser Technology, 2008, 40(2): 405-414.
[25] ABBOUD J H. Effect of Processing Parameters on
Titanium Nitrided Surface Layers Produced by Laser Gas
Nitriding[J]. Surface and Coatings Technology, 2013,
214: 19-29.
[26] CHEN Z Y, ZHOU G J, CHEN Z H. Microstructure and
Hardness Investigation of 17-4PH Stainless Steel by Laser
Quenching[J]. Materials Science and Engineering: A,
2012, 534: 536-541.
[27] 叶诗豪, 姚建华, 胡晓冬, 等. 激光固溶17-4PH的机理
与性能研究[J]. 动力工程学报, 2011, 31(5): 391-396.
YE S H, YAO J H, HU X D, et al. Mechanism of Laser
Solid Solution for 17-4PH and Properties of the Treated
Material[J]. Journal of Chinese Society of Power Engine-
ering, 2011, 31(5): 391-396.
[28] CHUNG C Y, TZENG Y C. Effects of Aging Treatment
on the Precipitation Behavior of Ε-Cu Phase and Mech-
anical Properties of Metal Injection Molding 17-4PH
Stainless Steel[J]. Materials Letters, 2019, 237: 228-231.
[29] POPOV V. Generalized Archard Law of Wear Based on
Rabinowicz Criterion of Wear Particle Formation[J].
Facta Universitatis, Series: Mechanical Engineering, 2019,
17(1): 39.
[30] 张安琪, 王彦芳, 牛德文, 等. 热丝激光熔覆17-4PH涂
层组织与腐蚀磨损性能[J]. 表面技术, 2022, 51(9):
379-386.
ZHANG A Q, WANG Y F, NIU D W, et al. Microst-
ructure and Tribocorrosion Properties of Hot-Wire Laser
Cladding 17-4PH Coating[J]. Surface Technology, 2022,
51(9): 379-386.
[31] 童庆, 陈泉志, 莫秋凤, 等. 预置Ti粉对激光氮化TC4
涂层组织及性能的影响[J]. 中国表面工程, 2018, 31(5):
167-174.
TONG Q, CHEN Q Z, MO Q F, et al. Effects of Pre-Set
Ti Powder on Microstructure and Properties of Laser
Nitriding TC4 Coating[J]. China Surface Engineering,
2018, 31(5): 167-174.
[32] KATO K. Wear in Relation to Friction—A Review[J].
Wear, 2000, 241(2): 151-157.
版权声明:本文标题:17-4PH_不锈钢激光气体渗氮层显微组织与摩擦学性能 内容由网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://www.roclinux.cn/p/1735457066a1666890.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论