admin 管理员组文章数量: 1087649
2024年12月29日发(作者:float参数)
REVIEW
TowardanAggregatedUnderstanding
ofEnzymaticHydrolysisofCellulose:
NoncomplexedCellulaseSystems
Yi-HengPercivalZhang,
1
1,2
ThayerSchoolofEngineering,DartmouthCollege,Hanover,
NewHampshire03755;e-mail:
@
,
@
2
DepartmentofBiologicalSciences,DartmouthCollege,Hanover,
NewHampshire03755
Received2June2004;accepted29July2004
Publishedonline10November2004inWileyInterScience().DOI:10.1002/bit.20282
1
Abstract:Informationpertainingtoenzymatichydrolysisof
cellulosebynoncomplexedcellulaseenzymesystemsis
reviewedwithaparticularemphasisondevelopmentof
aggregatedunderstandingincorporatingsubstratefeatures
inadditiontoconcentrationandmultiplecellulasecompo-
consideredincludepropertiesofcellulose,
adsorption,cellulosehydrolysis,andquantitativemodels.
Aclassificationschemeisproposedforquantitativemodels
forenzymatichydrolysisofcellulosebasedonthenumber
ofsolubilizingactivitiesandsubstratestatevariablesin-
estthatitistimelytorevisitandreinvig-
oratefunctionalmodelingofcellulosehydrolysis,andthat
thiswouldbehighlybeneficialifnotnecessaryinorder
tobringtobearthelargevolumeofinformationavailable
oncellulasecomponentsontheprimaryapplicationsthat
motivateinterestinthesubject.
B2004WileyPeriodicals,Inc.
Keywords:adsorption;cellulose;cellulase;hydrolysis;ki-
neticmodel
INTRODUCTION
Thepotentialimportanceofcellulosehydrolysisinthecon-
textofconversionofplantbiomasstofuelsandchemicals
iswidelyrecognized(Lyndetal.,1991,1999;Himmeletal.,
1999),andcellulosehydrolysisalsorepresentsoneofthe
largestmaterialflowsintheglobalcarboncycle(Falkowski
etal.,2000).Thequantityofscientificinformationon
componentsofcellulose-hydrolyzingenzymesystemhas
e12-year
periodfrom1991to2003,forexample,thenumberof
knownglycosylhydrolasesgenesequenceshasincreased
from
f
300to>10,000,andthenumberofcellulase
crystalstructureshasincreasedfromseveralto
f
230(H.
Correspondenceto:Y.-
Contractgrantsponsors:DepartmentofEnergyandNationalInstituteof
StandardsandTechnology
Contractgrantnumbers:DE-FG02-02ER15350and60NANB1D0064
Henrissat,.).Alsoduringthisperiod,exten-
sivestructurallybasedclassificationschemeshavebeen
introducedforbothcatalyticandcellulose-bindingmod-
ules,andhaveledtonewinsightsandhypotheseswith
respecttotheevolutionofcellulasesystems(Henrissat,
1991;HenrissatandBairoch,1993,1996),updatedfre-
quentlyathttp//:/CAZY.
Inorderforthelargevolumeofavailableinformationon
cellulasecomponentstobebroughttobearontheprimary
applicationsthatmotivateinterestincellulosehydrolysis,
e.g.,conversionofrenewablyproducedbiomasstofuels
andcommoditychemicals,itisnecessarytoincorporate
thisinformationintoanunderstandingofcellulasesystems
comprisedofmultiplecomponentswithdistinctmodesof
uationisfurthercomplicatedbecausethe
actionofcellulaseenzymesystemsisimpactedbysubstrate
propertiesinadditiontoconcentration—suchasdegreeof
polymerization,crystallinity,accessiblearea,thepresence
oflignin—whichdependontheparticularsubstratebeing
courseofseekingan‘‘aggregated’’understandingofenzy-
matichydrolysisofcellulosethatincorporatesinforma-
tionaboutcellulasecomponentsandsubstratefeaturesin
additiontoconcentration,quantitativemodelsaretremen-
icularimportance,measuredpa-
rametersforcellulasecomponentsandsubstratescould
inprinciplebeincorporatedintomodelsusedtopredict
thebehaviorofmulticomponentcellulaseenzymesystems.
Comparisonofsuchpredictionstoexperimentalmeasure-
mentsisthemostsystematicandrigorousmeansavailable
bywhichtotestwhetherunderstandingofcellulasecompo-
nentsandtheirinteractionsissufficienttoexplainagiven
tion,onceaquantitativemodelisvali-
dated,itcanbeusedtorapidlyformulatenewhypothesesof
significanceinbothfundamentalandappliedcontexts.
B2004WileyPeriodicals,Inc.
Thisarticlereviewsavailableinformationonenzymatic
hydrolysisbynoncomplexedcellulasesystems;thatis,sys-
temsbasedoncomponentsthatactdiscretelyratherthan
asstablecomplexes(Lamedetal.,1983;Tommeetal.,
1995a).Aconsiderableportionofthisreviewisspent
onthepropertiesofcelluloseinlightofthecentralrole
suchpropertiesplayinmechanisticallybasedquantitative
icular,thefollowing
sectionconsiderscrystallinity,degreeofpolymerization,
accessibility,preparationandpropertiesofmodelsub-
strates,tion
CellulaseAdsorptionisdevotedtoadsorptionleadingtothe
formationofcellulose–cellulasecomplexes,includingad-
sorptionmodels,reversibility,andenzymemobility,aswell
asinferredaccessibilityofcellulosefromcellulaseadsorp-
fter,mechanisticunderstandingofcellulose
hydrolysisbynoncomplexedsystemsisaddressedin
CelluloseHydrolysis,withattentiongiventoconcep-
tualunderstandingofcellulosehydrolysis,featuresofthe
widelystudiedTrichodermareeseicellulasesystem,docu-
mentationandunderstandingofsynergismamongcellu-
lasecomponents,andasummaryofcurrentmechanistic
tionQuantitativeModelspresents
aclassificationschemeandsummarizesfeaturesofmod-
alsectionofferscon-
cludingperspectivesandoutlinesoutstandingchallenges
associatedwithunderstandingandmodelingnoncomplexed
urprimaryfocusisonthefunction
ofcellulasesratherthantheirstructure,weusetheolder,
functionallydefinednomenclatureratherthanthenewer
nomenclaturebasedonamino-acidsequenceandmolecu-
larstructure.
CELLULOSE
ellulose
productionbyphotosynthetichigherplantsandalgaeis
thoughttobebyfarthemostimportantintermsofglobal
carbonflows,celluloseproductionbynonphotosynthetic
organisms(certainbacteria,marineinvertebrates,fungi,
slimemoldsandamoebae)hasalsobeendocumented
(Coughlan,1985;Jarvis,2003;Lyndetal.,2002;Tomme
etal.,1995a).Celluloseisalinearcondensationpolymer
consistingofD-anhydroglucopyranosejoinedtogetherby
h-1,ocellobioseistherepeating
unitofcellulose,sinceadjacentanhydroglucosemole-
culesarerotated180jwithrespecttotheirneighbors
(Fig.1a).Thisrotationcausescellulosetobehighlysym-
metrical,sinceeachsideofthechainhasanequalnumber
ngofadjacentcellulosemol-
eculesbyhydrogenbondsandvanderWaal’sforcesre-
sultsinaparallelalignmentandacrystallinestructure.
Theextensivehydrogenbondsofinterchain(2peranhy-
droglucopyranose)andintrachain(2
f
3peranhydrogluco-
pyranose)producesstraight,stablesupramolecularfibers
ofgreattensilestrength(GardnerandBlackwell,1974a,b;
Krassig,1993;NevellandZeronian,1985).Incontrast,
starchcontainsamyloseandamylopectinconnectedby
a-1,4andtosomeextenta-1,6glucosidicbonds,forming
atightlycoiledhelicalstructuremaintainedbyinterchain
hydrogenbonds(Buleonetal.,1998;Calvert,1997).Na-
tivecellulose,referredtoascelluloseI,hastwodistinct
crystalliteforms,I
a
,whichisdominantinbacterialand
algalcellulose,andI
h
,whichisdominantinhigherplants
(AtallaandVanderhart,1984).Nativecellulose(celluloseI)
canbeconvertedtoothercrystallineforms(II–IV)byvar-
ioustreatments(KleinandSnodgrass,1993;Krassig,1993;
O’Sullivan,1997).
Celluloseexistassheetsofglucopyranoseringslyingin
aplanewithsuccessivesheetsstackedontopofeachother
eofthisar-
rangement,thesurfaceofacelluloseparticlehasdistinct
‘‘faces’’thatinteractwiththeaqueousenvironmentand
carbonsintheglucopyranose
ringandinternalh-glucosidicbondslieintheabplaneor
¯
0faceconsistsof‘‘110’’face,whereastheacplaneor11
theedgesofrings(seeFig.1b).Additionalfacespresent
reducingandnonreducingends,eating
unitofthe110faceisthecellobioselattice,whichmea-
sures1.04nmalongtheaxisofthecellulosemoleculeand
100cellu-
loseglucansareaggregatedintoelementaryfibrilswith
acrystallinewidthof4–5nm(O’Sullivan,1997),and
bunchesofelementaryfibrilsareembeddedinamatrixof
hemicellulosewithathicknessof7–nifica-
tionprocessoccurslateintheprocessofsynthesizingnat-
uralfibers,soligninislocatedprimarilyontheexterior
ofmicrofibrilswhereitcovalentlybondstohemicellulose
(Fig.1c;KleinandSnodgrass,1993).
Therelationshipbetweenstructuralfeaturesofcellu-
loseandratesofenzymatichydrolysishasbeenthesubject
ofextensivestudyandseveralreviews(Converse,1993;
CowlingandKirk,1976;Lyndetal.,2002;Mansfieldetal.,
1999;McMillian,1994),butisstillincompletelyunder-
uralfeaturesofcellulosecommonlyconsidered
asrate-impactingfactorsincludecrystallinityindex,degree
ofpolymerization,andaccessiblearea.
CrystallinityIndex(CrI)
Crystallinityhasoftenbeenthoughtofasprovidingan
indicationofsubstratereactivity,andisprominentlyfea-
turedinthemodelofWood(1975)aswellasothermodels.
Thecrystallinityofdriedcellulosesamplescanbequan-
titativelymeasuredfromthewide-rangeX-raydiffraction
pattern(Krassig,1993).Inthecaseofcellulose-I,thecrys-
tallinityindex(CrI)iscalculatedusingtheformula:
CrI¼1Àh
am
=h
cr
¼1Àh
am
=ðh
tot
Àh
am
Þð1Þ
basedontheratiooftheheightofcrystallinecellulosein
the002reflectionat2u=22.5j(h
cr
)totheheightof
amorphouscellulose(h
am
),andh
tot
=h
cr
+h
am
.Cotton
798BIOTECHNOLOGYANDBIOENGINEERING,VOL.88,NO.7,DECEMBER30,2004
Figure1.a:Structureofcellulosefeaturingrepeatingh1,4-linkedanhydrocellobioseunits.b:softherepeatingunit
(cellobiose)are:a=0.817nm,b=1.04nm,andc=esoftheglucopyranoseringsareparalleltotheabplane(110face)ofthecrystal
(Mosieretal.,1999).c:Organizationoflignocelluloseoriganizationintoelementaryfibrilsandmicrofibrils(KleinandSnodgrass,1993).
(Hoshinoetal.,1997;Leeetal.,1982;Sinitsynetal.,1991),
bacterialcellulosefromAacetobacterxylinum(Boisset
etal.,1999;Gilkesetal.,1992;Valjamaeetal.,1999),and
cellulosefromthealgaValoniaventricosa(Boissetetal.,
1999;Fierobeetal.,2002)provideexamplesofhighly
crystallinecellulose,whilephosphoricacidswollencellu-
loseandball-milledcelluloseareregardedasamorphous
cellulose(Hoshinoetal.,1997;Leeetal.,1982;Ooshima
ZHANGANDLYND:NONCOMPLEXEDCELLULASESYSTEMS799
etal.,1983).Commonmodelsubstratesderivedfrom
bleachedcommercialwoodpulps,suchasAvicel(Wood
andBhat,1988;Wood,1988),filterpaper(Henrissatetal.,
1985),andSolkaFloc(BertrainandDale,1985;Fanetal.,
1980;Leeetal.,1982;Sinitsynetal.,1991)areregardedas
ablendofamorphousandcrystallineforms(Gilkesetal.,
1991).TypicalvaluesofCrIforvariousmodelcellulosic
valueofcel-
luloseincreasesafteraperiodofwaterswellingduetore-
crystallization(Fanetal.,1980;Leeetal.,1983;Fengeland
Wegener,1984),andthevariationsindryingconditionprior
tomeasurementofCrImaycausedifferencesbetween
substratesarisingfromthemethodofsubstratepreparation
ratherthanpropertiesofthesubstrateperse(Lenzeetal.,
1990;Weimeretal.,1995).Thepresenceofresidualcells
andproteinscanalsoresultinartifactsintheCrIassay
(Converse,1993).
Cellulosehydrolysisratesmediatedbyfungalcellulases
aretypically3–30timesfasterforamorphouscelluloseas
comparedtohighcrystallinecellulose(Lyndetal.,2002;
TableIII).Thisobservationledinvestigatorsinthe1980s
topostulateamodelforcellulosestructureconsistingof
amorphousandcrystallinefractions(Fanetal.,1980,1981;
Leeetal.,1983).Ifthishypothesiswerecorrect,itwould
beexpectedthatcrystallinityshouldincreaseoverthe
courseofcellulosehydrolysisasaresultofpreferential
reactionofamorphouscellulose(BetrabetandParalikar,
1977;Ooshimaetal.,1983).However,severalstudieshave
foundthatcrystallinitydoesnotincreaseduringenzymatic
hydrolysis(Lenzeetal.,1990;Ohmineetal.,1983;Pulsand
Wood,1991;Schurzetal.,1985;Sinitsynetal.,1989).Con-
sideringboththeuncertaintyofmethodologiesformea-
suringCrIaswellasconflictingresultsonthechangeof
CrIduringhydrolysis,itisdifficulttoconcludeatthistime
thatCrIisakeydeterminantoftherateofenzymatichy-
drolysis(Lyndetal.,2002;Mansfieldetal.,1999).
Futurestudiesaimedatdevelopingandapplyingim-
provedmethodswouldbeusefultomoredefinitivelyre-
rpreting
crystallinitydata,andindeeddataforallcellulosephysical
properties,caremustbetakentodistinguishcorrelation
mple,severaltreatmentsthat
decreasecrystallinityalsoincreasesurfacearea,andithas
beensuggestedthattheincreasedhydrolysisratesobserved
withsubstratesarisingfromsuchtreatmentsmaybedueto
increasingadsorptivecapacityratherthansubstratereac-
tivity(CaulfieldandMoore,1974;HowellandStuck,1975;
LeeandFan,1982).Comparingthehydrolysisrateson
varioussourcesofmodelcellulosicsubstrates,Fierobeetal.
(2002)concludedthataccessibilityofcelluloseisamore
importantfactorthancrystallinityindexindeterminingthe
hydrolysisrate.
DegreeofPolymerization
Thedegreeofpolymerization(DP)ofcellulosicsubstrates
determinestherelativeabundanceofterminalandinterior
h-glucosidicbonds,andofsubstratesforexo-actingand
endo-actingenzymes,edefinedin
termsofthenumberaverageDP(DP
N
),weightaverageDP
(DP
W
),orDPinferredfromviscosity(DP
V
):
P
M
n
N
i
M
i
DP
N
¼¼
P
=MW
glu
MW
glu
N
i
ð2Þ
P
N
i
M
i
2
M
W
P
DP
W
¼¼=MW
glu
N
i
MW
glu
P
M
V
N
i
D
¼
P
=MW
glu
DP
V
¼
MW
glu
N
i
ð3Þ
ð4Þ
yofsomephysicalpropertiesofmodelcellulosic
substrates.
Substrate
1
Avicel
BC
PASC
Cotton
FilterPaper
Woodpulp
1
CrI
2
0.5–0.6
0.76–0.95
0–0.04
0.81–0.95
–0.45
0.5–0.7
SSA
2
(m
2
/g)
20
200
240
na.
na.
61–55
DP
N
2
300
2000
100
1000–3000
750
500–1500
F
RE
(%)
0.33
0.05
1.0
0.1–0.033
0.13
0.06–0.2
BC,bacterialcellulose;PASC,phosphoricacidswollencellulose;CrI
denotescrystallinityindex;SSAdenotesspecificsurfaceareabyBET;
DP
N
denotesthenumber-averagedegreeofpolymerization;F
RE
denotes
thefractionofreducingends.
2
Referencesintext.
whereN
i
isthenumberofmolesofagivenfractionihaving
molarmassM
i
,M
N
isthenumber-averagemolecular
weight,M
w
istheweight-averagemolecularweight,M
V
is
theviscosity-averagemolecularweight,MW
glu
isthe
molecularweightofanhydroglucose(162g/mol),andDis
ementofDPbeginswithdissolutionof
celluloseusingatechniquethatdoesnotalterchainlength.
Severalsuchmethodsappearsatisfactory,including:1)
metalcomplexsolutionssuchasCuamsolution(Klemm
etal.,1998)andcupriethylenediamine(Klemen-Leyeretal.,
1992,1994,1996);2)formingcellulosederivativesby
reactingwithorganicsolvents(NgandZeikus,1980)or
inorganicacidssuchasnitricacid(Whitaker,1957);and3)
ionicsolutionssuchasN,N-dimethylacetamide(DMAc)/
LiCl(Striegel,1997).Afterdissolution,DP
N
canbemea-
suredbymembraneorvaporpressureosmometry,cry-
oscopy,ebullioscopy,determinationofreducingendcon-
centration,orelectronmicroscopy(Krassig,1993).DP
W
canbemeasuredbasedonlightscattering,sedimentation
equilibrium,andX-raysmallanglescattering,andDP
V
is
cosityofdissolved
celluloseorcellulosederivativeshasbeenfoundtoequal:
D¼K
m
M
i
aþ1
ð5Þ
800BIOTECHNOLOGYANDBIOENGINEERING,VOL.88,NO.7,DECEMBER30,2004
inwhichK
m
=constant,withthevalueofaforcellulose
andcellulosederivativesinmostcasesrangingfrom0.75to
1(Krassig,1993).Therefore,DP
V
canbewrittenas:
P
N
i
M
i
1:75À2
P
=MW
glu
ð6Þ
DP
V
¼
N
i
Sincecelluloseispolydisperse,DP
W
zDP
V
>DP
N
.The
DP
N
valuesareadequateindealingwithcellulosehydrol-
ysis,andDP
W
andDP
V
frequentlyshowagoodcorrelation
topolymerproperties(Klemmetal.,1998;Krassig,1993).
ThedistributionofDPsamongapopulationofcellulose
moleculescanbemeasuredbysizeexclusionchromatog-
raphy(Yauetal.,1979).ThereciprocalofDPcorresponds
tothefractionofreducingendsrelativetoallglucanunits
present(F
NR
,unitless).
Cellulosesolubilitydecreasesdrasticallywithincreasing
extrins
withDPfrom2–6aresolubleinwater(Klemmetal.,1998;
Miller,1963;Pereiraetal.,1988),whilecellodextrinsfrom
7–13orlongeraresomewhatsolubleinhotwater(Zhang
andLynd,2003;Schmidetal.,1988).AglucanofDP=30
alreadyrepresentsthepolymer‘‘cellulose’’initsstructure
andproperties(Klemmetal.,1998).
TheDPofcellulosicsubstratesvariesgreatly,from<100
to>15,000,dependingonsubstrateoriginandpreparation,
fwoodafterpulpingis
reducedto500–1,500(BertrainandDale,1985;Kleinand
Snodgrass,1993;Leeetal.,1982;Swatloskietal.,2002).
Afterpartialacidhydrolysis,theDPofAvicelisfurther
decreasedto130–800(Hoshinoetal.,1997;NgandZeikus,
1980;Ross-Murphy,1985;Steineretal.,1988;Wood,1985),
dependingonhydrolysisconditions(Dongetal.,1998)and
theDPoftheoriginalsubstrate(Wood,1988).Similarly,the
DPofnaturalcottoncanbeashighas15,000,butisreduced
to1,000–3,000orlessinthepreparationofcottonlinters
involvingtreatmenttoaccomplishdewaxingandwhitening
(Kleman-Leyeretal.,1992,1996;OkazakiandMoo-
Young,1978;RyuandLee,1982),andfilterpapermade
fromcottonpulphasaDPof500–1,000orhigher
(Nisizawa,1973;Kongruangetal.,2004).Bacterialcel-
lulose(BC)hasanaverageDPof2,000–3,000(Hestrin,
1963;Fierobeetal.,2002;Valjamaeetal.,1999),while
bacterialmicrocrystallinecellulose(BMCC)preparedby
treatmentofBCwithacidsrangesfrom130–1,300,de-
pendingonhydrolysisconditions(Valjamaeetal.,1999).
TheDPofphosphoric-acidswollencellulose(PASC)ranges
from30tomorethan1,000(Fanetal.,1980;Krassig,1985;
Petreetal.,1981;WoodandMcCrae,1972),depending
ontheDPofthestartingsubstrate(Wood,1988;Hoshino
etal.,1997),aswellasthephosphoricacidincubationtime
andtemperature(Krassig,1993).
ThechangeinDPoverthecourseofhydrolysisfor
cellulosicsubstratesisdeterminedbytherelativepropor-
tionofexo-andendo-actingactivitiesandcelluloseproper-
canasesactonchainends,andthusdecrease
DPonlyincrementally(Kleman-Leyeretal.,1992,1996;
Srisodsuketal.,1998).Endoglucanasesactoninterior
portionsofthechainandthusrapidlydecreaseDP(Kleman-
Leyeretal.,1992,1994;Selby,1961;Srisodsuketal.,1998;
Whitaker,1957;WoodandMcCrae,1978).Exoglucanase
hasbeenfoundtohaveamarkedpreferenceforsubstrates
withlowerDP(Wood,1975),aswouldbeexpectedgiven
thegreateravailabilityofchainendswithdecreasingDP.
Itiswellknownthatendoglucanaseactivityleadstoan
increaseinchainendswithoutresultinginappreciable
solubilization(Irwinetal.,1993;Kruusetal.,1995;Re-
verbel-Leroyetal.,1997).Weknowofnoindicationinthe
literaturethattherateofchainendcreationbyendogluca-
naseisimpactedbysubstrateDP.
Accessibility
Cellulaseenzymesmustbindtothesurfaceofsubstrate
particlesbeforehydrolysisofinsolublecellulosecantake
3Dstructureofsuchparticles(includingmicro-
structure)incombinationwiththesizeandshapeofthe
cellulaseenzyme(s)underconsiderationdeterminewhether
h-glucosidicbondsareorarenotaccessibletoenzymatic
osicparticleshavebothexternalandinternal
ral,theinternalsurfaceareaofcelluloseis
1–2ordershigherthantheexternalsurfacearea(Chang
etal.,1981),butthisisnotalwaysthecase,forexample,in
ernalsurfaceareacan
bemeasuredbysmallangleX-rayscattering(SAXS),mer-
curyporosimetry,watervaporsorption,andsizeexclusion
(Grethlein,1985;NeumanandWalker,1992;Stoneetal.,
,
naturalcotton;NW,naturalwood;P,pulp;CT,cottonlinter;FP,filterpaper.
ZHANGANDLYND:NONCOMPLEXEDCELLULASESYSTEMS801
1969).Theinternalsurfaceareaofporouscelluloseparticles
dependsonthecapillarystructureandincludesintrapar-
ticulatepores(1–10nm)aswellasinterparticulatevoids
(>5Am)(MarshallandSixsmith,1974).Grethlein(1985)
foundlinearcorrelationsbetweentheinitialhydrolysisrate
ofpretreatedbiomassandtheporesizeaccessibletoa
˚
,similartothesizeofmoleculewithadiameterof51A
surfaceexposedto
dextrancannotdistinguishthespecificactivecellulosesur-
faceareaatwhichenzymatichydrolysisoccursfromthe
surfaceareawhichisnotasiteforenzymaticattack(Chanzy
etal.,1984;Gilkesetal.,1992;Lehtioetal.,2003),re-
sultinginpotentialoverestimationofeffectivecellulase-
quesformeasuringinternalsurface
generallydonotestimateexternalarea(Converse,1993).
Externalsurfaceareaiscloselyrelatedtoshapeandpar-
ticlesize,andcanbeestimatedbymicroscopicobservation
(Gilkesetal.,1992;Henrissatetal.,1988;Reinikainenetal.,
1995b;Weimeretal.,1990;WhiteandBrown,1981).For
example,theexternalsurfaceareaofBMCCis
f
115m
2
/g
(Gilkesetal.,1992)whereasthatofAvicelis
f
0.3m
2
/g
(Weimeretal.,1990).Increasingcellulaseadsorptionand
cellulosereactivitywithdecreasingparticlesizehasbeen
reported(Kimetal.,1992;Mandelsetal.,1971).However,
thismaybeduetocausesotherthanincreasedexternalarea,
perhapsdecreasingmasstransferresistance,sinceexternal
surfaceisthoughttobeasmallfractionofoverallsurface
areaformostsubstrates.
Thegrosscelluloseaccessibilityisgenerallymeasuredby
thesorptionofnitrogen,argonorwatervapor,dimensional
changeorweightgainbyswellinginwaterororganic
liquids,andexchangeofHtoDatomswithD
2
t
widelyusedprocedureforspecificsurfacearea(SSA)is
theBrunauer-Emmett-Teller(BET)methodusingnitrogen
ariationsintheexperimentalcondi-
tionssuchasadsorptiontime,vacuumtimeandvacuum
pressure(MarshallandSixsmith,1974),sampleprepara-
tion(Grethlein,1985;Leeetal.,1983),andsampleorigin
andfeatures(MarshallandSixsmith,1974;Weimeretal.,
1990),awiderangeofgrossareavalueshavebeenreported
cific
areaofAvicelPH102increasesfrom5.4m
2
/gsurfacearea
to18m
2
/gafteralongtimeofwaterswelling,becausethe
capillarystructureofair-driedcellulosefromthewater-
swollenstatecollapses,resultingindrasticchangesinphys-
icalparameters(Grethlein,1985;Leeetal.,1983).Tokeep
substratecapillarystructureasitexistsinthehydrated
state,itisrecommendedthatSSAbemeasuredusing
solvent-driedsamples(Grethlein,1985;Leeetal.,1983).
ThetypicalSSAofBMCC,Avicel,andwetpulpare
f
200m
2
/gBMCC(Bothwelletal.,1997),1.8–22m
2
/g
Avicel(Fanetal.,1980;Leeetal.,1983;Marshalland
Sixsmith,1974),and55–61m
2
/gpulp(Fanetal.,1980;
Kyriacouetal.,1988).ThespecificsurfaceareaofPASC
fromSolkaFlocincreasesfrom19.5to239m
2
/gwhen
phosphoricacidconcentrationincreasesfrom75%to85%
(Leeetal.,1982).Becauseanitrogenmoleculeismuch
smallerthancellulase,ithasaccesstoporesandcavities
ore,
thereislimitedbasistoinferthatSSAmeasuredusingthe
BETmethodisakeydeterminantofenzymatichydrolysis
rate(Mansfieldetal.,1999).
PreparationandPropertiesofModelSubstrates
Woodpulpismadefromwoodusingseveralsteps,in-
cludingshredding,delignification,bleaching,andwashing
(Klemmetal.,1998).Forexample,SolkaFlocismade
fromSO
2
-bleachedsprucepulpbyballmilling(Ghose,
1969).Avicel,alsocalledhydrocelluloseandmicrocrystal-
linecellulose,ispreparedfromcellulosicfibers(woodpulp)
bypartialacidhydrolysisandthenspraydryingofthe
washedpulpslurry,butmicrocystallinecellulose(Avicel)
stillcontainsasubstantialamount(
f
30–50%)ofamor-
phouscellulose(Krassig,1993).Bacterialcellulose(BC)
ispreparedfromthepellicleproducedbyAcetobacter
xylinum(ATCC23769)(Hestrin,1963)orfromNatade
Coco(DaiwaFineProduces,Singapore;Boissetetal.,
2000).Bacterialmicrocrystallinecellulose(BMCC)ispre-
paredfromBCbypartialacidhydrolysistoremoveamor-
phouscellulose(Valjamaeetal.,1999).Cottoncellulose
ismadefromnaturalcottonafterremovingimpurities
suchaswax,pectin,andcoloredmatter(Corbett,1963).
WhatmanNo.1filterpaperismadefromcottonpulp
(Dongetal.,1998).Homogenousamorphouscellulosecan
,Avicel,
cottonlinters,byswellingtreatmentssuchasphosphoric
acid,alkali,DMSO,DMAc/oricacidswol-
lencellulose(PASC)ismostcommonlymadebyswelling
cellulosepowderusingconcentratedphosphoricacid,re-
sultingindecreasedcrystallinity(Wood,1988).Typical
valuesforCrI,DP,grosssurfaceareavalues(SSAbyBET),
andfractionofreducingends(F
NR
,reciprocalofDP)for
modelcellulosicsubstratesarepresentedinTableI.
CharacteristicsofPretreatedLignocellulose
Naturalcellulosemoleculesoccurinelementaryfibrils
closelyassociatedwithhemicelluloseandotherstructural
polysaccharidesaswellaslignin(Fig.1c).Suchligno-
cellulosetypicallycontainscellulose(35–50wt.%),hemi-
cellulose(20–35wt.%),andlignin(5–30wt.%)(Chang
etal.,1981;KleinandSnodgrass,1993;Lyndetal.,2002;
Mansfieldetal.,1999).Adetailedconsiderationofen-
zymatichydrolysisofnativelignocellulosemaybefound
elsewhere(Hatfieldetal.,1999).Sinceenzymatichydro-
lysisofnativelignocelluloseusuallyresultsinsolubiliza-
tionofV20%oftheoriginallypresentglucan,someform
ofpretreatmenttoincreaseamenabilitytoenzymatichy-
drolysisisincludedinmostprocessconceptsforbiological
atment,underappro-
priateconditions,retainsnearlyallofthecellulosepres-
entintheoriginalmaterialandallowsclosetotheoretical
edpretreatment
802BIOTECHNOLOGYANDBIOENGINEERING,VOL.88,NO.7,DECEMBER30,2004
processesincludediluteacid,steamexplosionathighsolid
concentration,‘‘hydrothermal’’process,‘‘organosolv’’pro-
cessesinvolvingorganicacidsolventsinanaqueousphase,
ammoniafiberexplosion(AFEX),strongalkaliprocess
(Lyndetal.,2002),aswellasmechanicaltreatmentssuch
ashammerandballmilling(Millettetal.,1976;Sunand
Cheng,2002).Comparativefeaturesoftheseprocessesas
wellasconsiderationofsubstratefactorsimpactingthehy-
drolysisratearereviewedelsewhere(Changetal.,1981;
Converse,1993;CowlingandKirk,1976;Dale,1985;Hsu,
1996;Ladischetal.,1983;Mansfieldetal.,1999;McMillian
1994;Lynd,1996;SunandCheng,2002;Weiletal.,1994;
WoodandSaddler,1988).
Hydrolysisoflignocellulosicbiomassismorecompli-
catedthanthatofpurecelluloseduetothepresenceof
nonglucancomponentssuchasligninandhemicellulose.
Ligninremovaland/orredistributionarethoughttohavea
significanteffectonobservedratesofenzymatichydrolysis
(Chernoglazovetal.,1988;Converse,1993;Lyndetal.,
2002).Ligninhasbeenimplicatedasacompetitivecel-
lulaseadsorbentwhichreducestheamountofcellulase
availabletocatalyzecellulosehydrolysis(Bernardezetal.,
1993;Ooshimaetal.,1990;SutcliffeandSaddler,1986).
Inaddition,ithasbeensuggestedthatresidualligninblocks
theprogressofcellulasedownthecellulosechain(Eriksson
etal.,2002;Mansfieldetal.,1999).
Themeasuredcrystallinityindexoflignocelluloseis
,
caremustbetakenincomparingCrIvaluesforlignocellu-
losicsubstratestovaluesforcellulosicsubstrates,andalso
incomparingtheCrIoflignocellulosicsubstratesbefore
edCrIvaluesforpretreated
materialsaregenerallyintherangeof0.4–0.7(Changand
Holtzapple,2000;Gharpurayetal.,1983;Koullasetal.,
1992;Sinitsynetal.,1989,1991).Pretreatmentbyeither
dilute-acidorsteamexplosionunderconditionsthatare
quiteeffectiveinenhancinghydrolysishasbeenfoundto
increasethecompositeCrIoflignocellulose(Deschamps
etal.,1996;Kimetal.,2003;Knappertetal.,1980;
Meunier-Goddiketal.,1999).Consistentwiththis,a
negativecorrelationbetweenhydrolysisrateandCrIhas
beenshowninexperimentsthatinvolvedchemicalpre-
treatmentsfollowedbyballmilling(ChangandHoltzapple,
2000;Gharpurayetal.,1983;Knappertetal.,1980;Koullas
etal.,1992;Sinitsynetal.,1989,1991),andalsoex-
perimentsthatexaminedvariouspretreatmentconditions
(ChangandHoltzapple,2000).Incontrasttothetrendob-
servedforotherpretreatmentprocesses,AFEXpretreat-
menthasbeenreportedtoresultinadecreaseinCrI
(Gollapallietal.,2002).Severalinvestigatorshaveimpli-
catedaccessiblesurfaceareaasanimportantfactorin
determiningtheeffectivenessofpretreatment(Gharpuray
etal.,1983;Grethlein,1985;GrethleinandConverse,1991;
Sinitsynetal.,1991).Asignificantdifficultyininterpreting
theeffectsofpretreatmentatamechanisticlevelisthat
exposureofsubstratestoconditionsthatcauseonepoten-
tialdeterminantofreactivitytochangeusuallybringabout
mple,
Sinitsynetal.(1991)foundastrongnegativecorrelation
betweenCrIandaccessiblesurfaceareaaccompanying
ectthattheimpact
ofincreasedsurfaceareaaccompanyingpretreatmentmay
inmanycasesbemoreimportantthanchangesinCrI,al-
thoughfurtherworkwillbeneededtoestablishthispoint
andtherelativesignificanceoftheseandotherfactorsmay
wellbedifferentfordifferentprocesses.
DPvaluesoflignocellulosicsubstratessuchasba-
gasse,wheatstraw,andEucalyptusregnanspretreated
usingsteamexplosion,supercriticalCO
2
,alkali,andozone
mostlyfallintherangeof600–1,100,althoughvaluesas
highas3,000havebeenrecordedforPinusradiatachips
(Puri,1984;Sinitsynetal.,1991).Duringdiluteacid-
catalyzedcellulosehydrolysis,theDPofcellulosicma-
terialsdecreasesrapidlyinitiallyandachievesanearly
constantvaluethereaftercalledthelevel-offDP(LODP)
(Klemmetal.,1998;Krassig,1993;Wood,1988).LODP
valuesintherangeof100–300havebeenmeasured,de-
pendingonthesubstrateandconditionssuchastemperature
andacidconcentration(Krassig,1993;Wood,1988).This
LODPvaluemaylimittheratesofhydrolysisthatcanoc-
curwithdiluteacidpretreatedlignocellulose,althoughthis
entcon-
clusionsabouttheimportanceofDPindetermining
hydrolysisratesofpretreatedcellulosicbiomasshavebeen
drawn,withSinitsynetal.(1991)concludingthatDPis
relativelyunimportant,butPuri(1984)concludingthatitis
quiteimportant.
CELLULASEADSORPTION
Adsorption
Cellulaseadsorptionisrapidcomparedtothetimere-
quiredforhydrolysis,withmanystudiesfindingthatad-
sorptionreachessteady-statewithinhalfanhour(Lynd
etal.,2002).Themostcommondescriptionofcellulase
adsorptionistheLangmuirisotherm(Eq.[7]),derivedas-
sumingthatadsorptioncanbedescribedbyasinglead-
sorptionequilibriumconstantandaspecifiedadsorption
gmuirisothermmayberepresentedas:
E
a
¼
W
max
K
P
E
f
1þK
P
E
f
ð7Þ
inwhichE
a
isadsorbedcellulase(mgorAmolcellulase/L),
W
max
isthemaximumcellulaseadsorption=A
max
*
S(mgor
Amolcellulase/L),A
max
isthemaximumcellulaseadsorp-
tionpergcellulose(mgorAmolcellulase/gcellulose),Sis
celluloseconcentration(gcellulose/L),E
f
isfreecellulase
(mgorAmolcellulase/L),andK
P
isthedissociationconstant
E
a
(K
P
¼
E
)intermsofL/tributioncoef-
f
S
ficientorpartitioncoefficient,R,isdefinedas:
R¼K
P
W
max
ð8Þ
803ZHANGANDLYND:NONCOMPLEXEDCELLULASESYSTEMS
RhasdimensionsofL/gcelluloseandcorrespondstothe
ratioofE
a
/E
f
whensubstrateisexcess,andhenceE
f
=0
(Beldmanetal.,1987;Klyosov,1988,1990;Kyriacouetal.,
1988;Medveetal.,1997).Inadditiontoequilibriumad-
sorptionmodels,adynamicadsorptionmodelhasbeenused
bysomeinvestigators(Converseetal.,1988;Converse
andOptekar,1993;NidetzkyandSteiner,1993;Nidetzky
etal.,1994c).
TheLangmuirequationiswidelyusedbecauseit
providesagood(andoftenverygood)fittothedatain
mostcases,anditrepresentsasimplemechanisticmodel
thatcanbeusedtocomparekineticpropertiesofvarious
cellulase–sevidentthatcellulase
bindingdoesnotcomplywithassumptionsimplicitinthe
Langmuirmodelduetooneormoreofthefollowing:1)
partiallyirreversiblecellulaseadsorption(Palonenetal.,
1999);2)interactionamongadsorbingcellulasecompo-
nents,especiallyathighconcentrations(Jeohetal.,2002);
3)multipletypesofadsorptionsites,evenforonecellulase
molecule(LinderandTeeri,1997;CarrardandLinder,
1999);4)cellulaseentrapmentbyporesofcellulose(Lee
etal.,1983);and5)multicomponentcellulaseadsorptions
inwhicheachcomponenthasdifferentconstants(Beld-
manetal.,1987).Inlightoftheseconsiderations,several
equilibriummodelsrepresentingalternativestosimple
Langmuiradsorptionhavebeenproposed,includingtwo-
siteadsorptionmodels(Linderetal.,1996;Medveetal.,
1997;Stalhbergetal.,1991;Woodwardetal.,1988a),
Freundlichisotherms(Medveetal.,1997),andcombined
LangmuirFreundlichisotherms(Medveetal.,1997).
Langmuirparametersforcellulaseadsorptionarepres-
entedinTableII,withanemphasisonnoncomplexed
ghwidevariationsareobservedin
thevaluesofparametersfordifferentcombinationsofen-
zyme,substrate,andtemperature,reproducibilityamong
measurementsfromdifferentlabstakenforthesameen-
-
sider,forexample,
cellulaseslistedinTableII,includingCBH1onBMCCat
4jC(Reinikainenetal.,1995b;Srisodsuketal.,1993)
and50jC(Bothwelletal.,1997;Tommeetal.,1995b),
CBH1onAvicelat20–25jC(KimandHong,2000;
Stahlbergetal.,1991;Tommeetal.,1990),andunfraction-
atedcellulaseadsorbingtoAvicelat4jC(Leeetal.,1982;
Luetal.,2002;Ooshimaetal.,1983).Thisreproducibility
suggeststhatexperimentalmethodsformeasurementof
adsorptionparametersmaybesufficientlystandardizedsuch
thatvaluesfromdifferentlabscanbemeaningfullycom-
estthatitmaybeusefultocalibratetech-
niqueswithmeasurementsmadeunderwell-characterized
tion
toexperimentalvariables,differentregressionmethods
canleadtodifferentvaluesforparameters(Bothwelland
Walker,1995).
GhoseandBisaria(1979)foundthatendoglucanasesad-
etal.(1984)foundthatcellulasecontainedtightlyad-
sorbedcellobiohydrolases,somelooselyboundEG1,and
a
etal.(1983)
endoglucanasesandcellobiohydrolaseswastemperature-
dependent,withendoglucanasespreferentiallyadsorbedat
5jC,andcellobiohydrolasespreferentiallyboundat50jC.
Bycontrast,Kyriacouetal.(1989)foundthatadsorptionof
CBH1wasstrongerthanadsorptionofEG1-3on
SolkaFlocat5jC,butthatpreferentialadsorptionofCBH1
wasdiminishedat50jC,andsuchpreferentialadsorption
wasalsoobservedtobelesspronouncedwithdecreasing
al.(2002)reportedthatthecombined
ellulasesCel5A,Cel6B,andCel9A
waslowerthanthesumofindividualadsorptionatlow
temperaturebuthigherat50jConBMCC.
Mostearlypublishedstudieshavedealtwiththerevers-
ibilityofcellulaseadsorptionbymeasuringtheamountof
enzymereleasedintosolutionascellulosehydrolysisprog-
ressed(Huang,1975;LeeandFan,1982;Mandelsetal.,
1971;MoloneyandCoughlan,1983).ButBeltrameetal.
(1982)determinedthattheadsorptionofproteinconsisted
ofirreversiblesteps,whichwerethoughttoarisefromcon-
al.
(1984)contradictedBeltrame’sfindingbyreportingthat
adsorbedcellulasecanberemovedbywashingwithbuf-
ractionatedcellulase,Kyriacouetal.(1989)
foundcellulaseadsorptionwasirreversible,whileBeldman
etal.(1987)foundcellulaseadsorptiontobepartially
,
Palonenetal.(1999)foundthatdesorptionofCBH2in
responsetosampledilutionshowedhysteresis(60–70%
reversible),whiledesorptionofCBH1wasmorethan90%
zkyetal.(1994b)
CBH1adsorptionispartiallyreversibleduetoitsbifunc-
CBH1CBMon
microcrystallinecellulosewasreportedtobereversible
(LinderandTeeri,1996),CBH2CBMcould
notbedissociatedfromcellulose(CarrardandLinder,
1999).el5A,Cel6B,
Cel48AontoBMCCwasreversibleatlowconcentration
butirreversibilitywasobservedathighcellulasecon-
centrations,apparentlyduetointerstitialentrapment(Jung
etal.,2002).
Inanagitatedbatchreactor,theintensityofagitationhas
littleeffectoncellulosehydrolysisaslongascellulosepar-
ticlesarecompletelysuspended(Huang,1975).Jervisetal.
(1997)studiedsurfacediffusionofCellulomonasfimicel-
lulasesCexandCenAonthesurfaceofValoniaventricosa
microcrystallinecelluloseusingfluorescencerecoveryaf-
terphotobleaching(FRAF).Basedoncomparisonofthe
valueofdiffusioncoefficientandspecificcellulaseactivity,
theseinvestigatorsinferredthatexternaldiffusionofcel-
lulaseisnotarate-limitingfactorforthewholereaction.
Ingeneral,experimentsexaminingstirringratealsosug-
gestthatexternaldiffusionofcellulaseonthesurfaceis
notrate-limiting(Fanetal.,1981;FanandLee,1983).But
wheninternalareaisfarlargerthanexternalsurface,which
804BIOTECHNOLOGYANDBIOENGINEERING,VOL.88,NO.7,DECEMBER30,2004
yofLangmuircellulaseadsoprtopmparameterfornoncomplexcellulasesandtheirsolecellulose-bindingdomains.
a
Strain
cellum
cellum
ovorans
ovorans
ovorans
cellum
cellum
a
Cellulase
CBH1
CBH1
CBH1
CBH1
CBH1
CBH1
CBH1
CBH1
CBH1
CBH1
CBH3(CBH1)
CBH1
CBH2
CBH2
CBH2
CBH2
CBH2
CBH2
EG1
EG1
EG2
EG3
EG4
EG5
EG6
EG3
total
total
total
total
total
CBM
CipA
CBM
CipA
CBM
CbpA
CBM
CbpA
CBM
CipA
CBM
Ce1K
CBM
Ce1K
CBM
Cex
CBM
Cex
CBM
Cex
CBM
E3
CBM
E3
CBM
CBH1
CBM
CBH2
SubstrateTemp.(jC)
50
4
4
50
50
20
25
4
20
40
30
50
25
4
20
20
30
50
50
30
30
30
30
30
30
50
5
4
4
4
2–8
25
25
37
37
37
A
max
mg/g(Amol/g)
(4.6)
(6.0)
(4.2)
(2.63)
(0.48)
69(1.1)
70(1.07)
48(0.74)
51.8
40
63
(0.17)
64(1.10)
28(0.52)
54.3
48.9
6.6
(0.258)
(0.166)
126
90
26
2.8
105
4.1
(0.308)
55.6
64
95.2
1224
78–89
10(0.54)
200(1.08)
(2.1)
(6.4)
(0.2)
(17.1)
(3.95)
40
3
13.3
(1.65)
(1.77)
Kp
L/g(L/Amol)
(0.28)
(8.33)
(7.14)
(4.03)
(0.09)
(0.278)
(0.01)
(0.93)
0.0192
0.0123
6.92
(1.41)
(0.01)
(1.92)
0.0071
0.0066
4.96
(0.95)
(0.56)
0.88
0.28
11.67
2.5
0.89
3.44
(0.91)
3.21
1.23
0.3
0.06
1.3–1.48
(2.5)
—
(1)
(1.25)
(1.4)
—
—
—
R
L/gCellulose
1.29
50
30
10.6
0.043
0.30
0.011
0.69
0.99
0.53
0.436
0.24
0.011
1.0
0.039
0.033
0.037
0.246
0.093
0.111
0.025
0.303
0.007
0.094
0.014
0.28
0.178
0.079
0.029
0.073
0.2
1.35
—
2.1
8
0.28
(2.33)
(9.87)
Reference
Bothwelletal.,1997
Reinikainenetal.,1995b
Srisodsuketal.,1993
Tommeetal.,1995b
Bothwelletal.,1997
Stahlbergetal.,1991
Tommeetal.,1990
Medveetal.,1997
KimandHong,2000
KimandHong,2000
Beldmanetal.,1987
Nidetzkyetal.,1994c
Tommeetal.,1990
Medveetal.,1997
KimandHong,2000
KimandHong,2000
Beldmanetal.,1987
Nidetzkyetal.,1994
Nidetzkyetal.,1994
Beldmanetal.,1987
Beldmanetal.,1987
Beldmanetal.,1987
Beldmanetal.,1987
Beldmanetal.,1987
Beldmanetal.,1987
Nidetzkyetal.,1994
Ooshimaetal.,1983
Leeetal.,1982
Luetal.,2002
Leeetal.,1982
Beltrameetal.,1982
Moragetal.,1995
Moragetal.,1995
Goldsteinetal.,1993
Goldsteinetal.,1993
Goldsteinetal.,1993
Ketaevaetal.,2001
Ketaevaetal.,2001
Ongetal.,1993
Ongetal.,1993
Ongetal.,1993
Bothwelletal.,1997
Bothwelletal.,1997
Palonenetal.,1999
Palonenetal.,1999
BMCC
BMCC
BMCC
BMCC
Avicel
Avicel
Avicel
Avicel
Avicel
Avicel
Avicel
FilterPaper
Avicel
Avicel
Avicel
Avicel
Avicel
FilterPaper
FilterPaper
Avicel
Avicel
Avicel
Avicel
Avicel
Avicel
FilterPaper
Avicel
Avicel
Avicel
PSAC
Cotton
Avicel
PSAC
Avicel
.
ose
PASC
BMCC
PASC
Avicel
BMCC
BMCC
Avicel
BMCC
BMCC
22
22
22
50
50
22
22
(0.124)
(0.182)
2.05
0.322
1.5
1.0
.,absorbentcotton;Fbcellulose,fibrouscotton.
isthecaseformostcellulosicsubstrates,itislikelythat
somecellulaseisentrappedinpores,resultinginlowerhy-
drolysisrates.
SpatialAnalysisofAdsorptionandInferred
AccessibilityofCellulose
Analysisofadsorptioninspatialtermsisaprerequisitefor
understandingcellulosehydrolysisatamechanisticlevel,
andalsoprovidesapotentiallypowerfulapproachtoeval-
aoc-
cupiedbyanadsorbedcellulasemoleculeismuchlarger
thattheareaoftherepeatingcellobioselattice(shownin
Fig.1b)forallcellulasesforwhichinformationisavailable.
Asaresult,thenumberofcellulasemoleculesthatcanbind
toacellulosesurfaceisingeneralsubstantiallysmallerthan
thenumberofaccessiblecellobioselatticesonthatsurface.
Adsorptionofcellulaseexhibitsapreferenceforthe110
face(Fig.1b)CBH1(Chanzyetal.,1984;
Lehtioetal.,2003)llulases(Gilkesetal.,
1992).Itseemsreasonabletohypothesizethatthisisgen-
erallytruesincethisisthefaceonwhichh-glucosidicbonds
areaccessiblebycellulase.
ZHANGANDLYND:NONCOMPLEXEDCELLULASESYSTEMS805
icactivitiesofTrichodermacellulasecomponentsoninsolublecellulosesubstrates.
Strain
T.
T.
T.
T.
T.
T.
T.
T.
T.
T.
T.
T.
T.
T.
T.
T.
T.
T.
T.
T.
T.
T.
viride
viride
reesei
reesei
reesei
reesei
reesei
reesei
reesei
viride
reesei
reesei
reesei
reesei
reesei
reesei
reesei
reesei
viride
viride
reesei
reesei
Enzyme
CBH
CBH
CBH
CBH1
CBH1
CBH1
CBH1
CBH1
CBH1
CBHIII(CBH1)
CBH2
CBH2
CBH2
CBH2
EG
EG
EG1
EG1
EG3(EG1)
EG3(likeEG1)
EG1
EG1
Temp.(jC)
40
40
50
50
50
40
50
45
40
30
50
40
50
50
50
50
45
40
40
30
50
50
Specificactivity(substrate)(AmolGE/mg/min)
0.42(Av)
0.53–1.0(AC)
0.08(FP)
0.014(Av),0.039(AC)
0.22(FP)
0.0175(Av)
0.065(Av)*
0.04(Av),0.6(AC)
0.012(Av)*,0.0046(FP)*
0.019(Av),0.03(AC)
0.36(FP)
0.0391(Av)
0.027(Av),0.052(AC)
0.065(Av)*
0.18(FP)
3.6(AC)
0.17(Av),26(AC)
0.0046(Av)*,0.0023(FP)*
0.13(Av),9.9(AC)
0.196(Av),0.45(AC)
0.045(Av)*
1.20(FP)
Reference
BerghemandPettersson,1973
GumandBrown,1977;GritzaliandBrown,1978
Ryuetal.,1984
Tommeetal.,1988
Nidetzkyetal.,1994c
vanTilbeurghetal.,1984
Bakeretal.,1998
Shoemaker,1983
Henrissatetal.,1985
Beldmanetal.,1985
Nidetzkyetal.,1994c
vanTilbeurghetal.,1984
Tommeetal.,1988
Bakeretal.,1998
Ryuetal.,1984
Niku-Paavolaetal.,1985
Shoemaker,1983
Henrissatetal.,1985
GritzaliandBrown,1978;Shoemaker,1978
Beldmanetal.,1985
Bakeretal.,1998
Nidetzkyetal.,1994c
*Long
incubationtime.
Gilkesetal.(1992)definedparametersconsistentwitha
spatialinterpretationofadsorptionandincorporatedthese
parametersintoamodifiedLangmuirequation:
E
a
¼
N
0
K
P
0
E
f
1þaK
P
0
E
f
ð9Þ
whereN
0
=Amolaccessiblecellobioselattices/gcellulose,
a=cellobioselatticesoccupied/boundcellulasemolecule,
K
P
V=K
P
/a.
Itmaybenotedthatthecellobioselatticesoccupied/
boundcellulasemolecule,a,maybecalculatedfrom:
a¼N
0
=A
max
ð10Þ
Foracellulasewithagivenvalueofa,thesurfacearea
accessibletothatcellulase(AS,m
2
/g)maybecalculated
fromthemaximumadsorptioncapacityasfollows:
AS¼A
max
N
A
aA
G2
ð11Þ
whereN
A
=Avogadro’sconstant(6.023
Â
10
23
molecules/
mol),A
G2
=areaofthecellobioselattice(0.53
Â
1.04nm=
5.512
Â
10
À19
,m
2
;GardnerandBlackwell,1974a).
ThevalueofASisdependentonthevalueofa,which
willvarydependingonwhichenzymeisunderconsid-
ecellulosesubstrates,thefractionof
h-glucosidicbondsaccessibletocellulaserelativetothe
totalnumberofglucosidicbonds(F
a
)isdefinedas:
F
a
¼2aA
max
MW
anhydroglucose
whereMW
anhydroglucose
=162g/molanhydroglucose.
ð12Þ
BMCChasbeenusedinmoststudiesaimedatdeter-
miningparametervaluesforspatialanalysisofadsorption.
ThisislikelybecausethegeometryofBMCCiswelles-
tablished,incontrasttomostothercellulosicsubstrates.
Inparticular,BMCCexistsasamicrofiberribbonwitha
crosssectionof15
Â
40nm,inwhichthenarrowerofthe
nacelluloseden-
sityof1.5–1.63g/cm
3
,Gilkesetal.(1992)andReinikainen
etal.(1995b)estimatedN
0
forBMCCat93–100Amolcel-
lobioselattice/g.
Atthistime,thelargestbodyofinformationrelevantto
.
,Gilkesetal.(1992)estimatevaluesof32.9,
39.2,and27.9forCenA,thecellulosebindingdomain
ofCenA,andCex,alyticdomainof
CBH1isbelievedtooccupyabout48cellobioselatticeson
atotallyanisotropicsurface(Sildetal.,1996),basedon
structuralinformationinferredfromX-raycrystallography
(Divneetal.,1994).is
thoughttooccupyabout10cellobioselatticesbasedon
nuclearmagneticresonancedata(Kraulisetal.,1989;
Reinikainenetal.,1995b).Reinikainenetal.(1995b)re-
portedarangeofvaluesforA
max
forCBH1bindingto
BMCC,fromwhichvaluesofafrom15–40canbecal-
culatedusingEq.[10].Theseauthorsestimateavalueof
about40fora,whichisveryclosetothevalueof38.7
estimatedbyTommeetal.(1995b)andisintermediate
betweenthesizeofthecatalyticdomainandtheCBM.
SincebindingofCBHIoccursprimarilytothereactive
faceofBMCC(Chanzyetal.,1984;Gilkesetal.,1992;
Lehtioetal.,2003),thevalueofamayalsobeestimated
fromtheratioofthereactivesurfaceareatototalsurface
806BIOTECHNOLOGYANDBIOENGINEERING,VOL.88,NO.7,DECEMBER30,2004
area,15/(15+40)=nthisvalue,aforBMCC
canbecalculatedasfollows:
a¼N
0
=A
max
¼0:27ÃS=ðA
max
ÃA
G2
ÃN
A
Þð13Þ
whereSisthetotalexternalsurfaceareaofBMCCfrom
itsgeometricshape=1kgBMCC/(1.5–1.63
Â
10
3
kg/m
3
)/
(15
Â
10
À9
m
*
40
Â
10
À9
m)
*
2
*
(15+40)
Â
10
À9
m=
122–112m
2
max
=6AmolCBH1/g
BMCC(Reinikainenetal.,1995b),a=15.3–16.7cello-
portanttonote
thattheinferredvalueofaisinfluencedbyexperimen-
talconditionssuchastemperatureandionicstrength
(Reinikainenetal.,1995b).
BasedonarepresentativeA
max
valueof4.6Amol/gfor
CBH1adsorptiontoBMCCat50jC(TableII)andain
therangeof15–40,ASvaluesforBMCCof23–61m
2
/g
maybecalculatedusingEq.[11].Thisvaluecorresponds
to18–50%ofthetotalexternalsurfaceareaoftheMBCC
ribbon(15m
2
/g).Regardlessoftheavalue,itappearsthat
cellulasedoesnotadsorbtoasignificantfractionofthe
externalsurfaceofBMCC.
ForAvicel(FMCPH105),0.48Amol/gisarepresentative
A
max
valueforCBH1adsorptionat50jC(TableII),from
whichtheAS
CBH1
ofAvicelisfoundtobe6.4m
2
/gusing
Eq.[10]
CBH1
val-
ueofAvicelPH105ismuchlargerthantheexternalsur-
facearea(0.3m
2
/g;Weimeretal.,1990),indicatingthat
>
f
95%r,AS
CBH1
is
muchsmallerthanthetotalsurfaceareaaccessibletoni-
trogen,
f
20m
2
forAvicel(MarshallandSixsmith,1975),
indicativeofthepresenceofextensiveinternalsurfacearea
inporestoosmalltobeaccessedbycellulasemolecules.
ConsiderationofAvicelandBMCCclearlyshowsthatthe
magnitudeofexternal,internal,andgrosssurfacearea,as
wellastherelativeimportanceofthese,isquitedifferent
q.[12]witha=40,F
a
is
foundtobe6.0%forBMCCand0.62%forAvicel.
Availabledatasuggestthattheareaaccessibletocel-
lulaseenzymes,asindicated,forexample,byAS
CBH1
,
tiontothe
10-folddifferenceforAS
CBH1
notedaboveforBMCCas
comparedtoAvicel,
cellulasehavereporteda3-foldhighercellulaseadsorption
capacityforSolkaFlocSW40comparedtoAvicel(Steiner
etal.,1988),anda20-folderhighercapacityforPASC
comparedtoAvicel(Leeetal.,1982;Moragetal.,1995).
AccessibleareaintheorderAvicel alsosupportedbydatafromtheCBMsisolatedfromC. fimi(Ongetal.,1993)cellum (Kataevaetal.,2001). Forpretreatedlignocellulosicmaterials,adsorptionto lignintypicallyoccursatthesametimeasadsorptiontocel- aetal.(1990)estimatedthemaximumad- cellulasewith respecttobothcelluloseandligninpresentindilute-acid- undtheadsorptioncapacity forcellulose(asdistinctfromlignin)increasedfrom14.1 to80.6mgcellulasepergramcelluloseasthepretreatment temperatureincreasedfrom180–220jC,whilethecapacity forlignindecreasedfrom100to12.3mgcellulase/glignin .(2002),also cellulase,reported cellulaseadsorptioncapacitiesof180mg/gcelluloserel- ativetothecellulosefractionofDouglasfirpreparedby SO 2 -catalyzedsteamexplosionfollowedbyperoxidetreat- ment,and95.2mgcellulase/esultssuggest thattheaccessibilityofcellulosepresentinpretreatedbio- masscanvarysignificantlyasafunctionofconditions,but isoftenofamagnitudecomparabletoAvicel. CELLULOSEHYDROLYSIS OntheMechanismofCelluloseHydrolysis (NoncomplexedSystems) BeginningwithReese’soriginalhypothesisfortheaction ofC1(Reeseetal.,1950,1968;Reese,1976),therehave beensuggestionsthatthemechanismofcellulosehydroly- sisinvolvesphysicaldisruptionofinsolublecellulosein ortance ofsuchdisruption,aswellasthecellulasecomponents responsibleforit,an(1985) usedtheterm‘‘amorphogenesis’’todescribephysical ,swelling,segmentation,ordestratificationof cellulose)thatenhanceenzymatichydrolysisandrender sed celluloseaccessibilityduringenzymatichydrolysishasbeen ncludeH 2 O 2 production inthepresenceofFeion(Koenigs,1975),ortheshort- ii(Halliwell andRiaz,1970),CBH1(Chanzyetal.,1983; Leeetal.,2000)oritscatalyticdomain(Leeetal.,1996) ortheCBH2catalyticdomain(Woodwardetal.,1992), endoglucanase–exoglucanasecomplex(Spreyand Bochem,1993),HumicolainsolensCBH2(Boissetetal., 2000),ThermomonosporafuscacellulasesE3andE5 (Walkeretal.,1990,1992),somenoncatalyticdomains doglucanaseA (Dinetal.,1991,1994),ashortfiber-generatingpolypep- koningii(Wangetal.,2003), fibril-formingprotein(MW=11.4kD)(Bankaetal.,1998), proteincalledswollenin(MW= 49kD)(Saloheimoetal.,2002). Itiswidelyobservedthattheheterogeneousstructureof cellulosegivesrisetoarapiddecreaseinrateashydrolysis proceeds,evenwhentheeffectsofcellulasedeactivation andproductinhibitionaretakenintoaccount(Zhangetal., 1999;Valjamaeetal.,1999).Explainingthisobservationat amechanisticlevelisanoutstandingissue,withimportant ghverylittle workhasbeendoneinvolvingdetailedcharacterization,it wouldseemlogicaltoexpectthatthedecliningreactivity ZHANGANDLYND:NONCOMPLEXEDCELLULASESYSTEMS807 ofresidualcelluloseduringenzymatichydrolysisisare- sultoffactorssuchaslesssurfaceareaandfeweraccessi- blechainendsand/oradsorptionofinactivecellulaseon thesurfaceofcellulose(orlignocellulose)particleswhich roscopiclevel,boththe accessibleareaofcellulose(basedontheBETassay;Fan etal.,1980)andcellulaseadsorptivecapacity(Ooshima etal.,1983)pergramcellulosehavebeenreportedto ulatethat theavailabilityofglucanandchainendspergrammay roscopiclevel,the CBH1disruptsfibers,resultinginmoresurface area(Leeetal.,1996),whileEGIIappearstosmoothfiber surface,resultinginlesssurfacearea(Leeetal.,2000). Freshadditionofsubstratescanstimulatemoresoluble sugarrelease(Carrardetal.,2000),alsoindicatingtheloss ofcellulosereactivityattheendofhydrolysisand/orin- creasedreactivityfor‘‘new’’cellulase/celluloseencounters ascomparedto‘‘old’’encounters. Whencellulaseenzymesystemsactinvitrooninsoluble cellulosicsubstrates,threeprocessesoccursimultaneously: 1)chemicalandphysicalchangesintheresidual(notyet solubilized)solid-phasecellulose;2)primaryhydrolysis, involvingthereleaseofsolubleintermediatesfromthe surfaceofreactingcellulosemolecules;and3)secondary hydrolysis,involvinghydrolysisofsolubleintermediatesto lowermolecularweightintermediates,andultimatelyto glucose,alchangesinresidual cellulosearemanifestedaschangesintheDPandchainend ucanaseincreasestheconcentration ofchainendsandsignificantlydecreasesDPbyattacking canases shortenDPincrementallyandonlyoccasionallydecrease ,endoglucanaseac- tivityisthoughttobeprimarilyresponsibleforchemical changesinsolid-phasecellulosethatoccuroverthecourse ofhydrolysis,butplaysaminorroleinsolubilizationrel- ativetoexoglucanase,whileexoglucanaseactivityis thoughttobeprimarilyresponsibleforsolubilizationbut playsaminorroleinchangingthechemicalpropertiesof alchangesinresidualcelluloseare manifestedaschangesinaccessiblesurfaceareaduetogeo- metricalchangesresultingfromtheconsumptionorenlarge- mentofaccessiblesurfaceofcelluloseduetoprogressive eculativelyatpresent,componentsof cellulaseenzymesystemsmaymakeadditionalsurfacearea availablebymechanismsotherthanhydrolysisperse. Sincetherateofsecondaryhydrolysisismuchfasterthan therateofprimaryhydrolysis,itispossible—althoughat thispointspeculative—thatsolublecellodextrinscouldac- countforasignificantfractionoftheimmediateproducts enzy- matichydrolysis,cellodextrinswithDP>4arepresent inthesolidphaseassociatedwithcrystallinecellulose (Kleman-Leyeretal.,1994,1996;Srisodsuketal.,1998;Stal- brandetal.,1998),andithasbeensuggestedthatthis associationimpedesreleaseofsuchcellodextrinstoso- r,cellodextrinswithDP>4arenotfound associatedwithamorphouscellulose(Stalbrandetal., 1998).Thus,enzymatichydrolysisofcellodextrinsof length4–6associatedwiththesolidphasemaybean importantpartoftheoverallsolubilizationprocessfor crystallinesubstrates,butnotforamorphoussubstrates. Mostoftheavailabledataoncellulosehydrolysiscon- cernstherateofsolubilization(process2)above,oftenbased onreleaseofreducingsugarsorsolubleglucoseequiva- pinion,bettercharacterizationofchemical andphysicalchangesassociatedwithresidualcelluloseas wellassecondaryhydrolysisarepromisingareasofinquiry inordertoimprovefundamentalunderstandingofcellu- losehydrolysis. TrichodermareeseiCellulaseSystem CellulasesofthegenusTrichodermahavereceivedin- tensiveattentiondueinsignificantparttothehighlevels dermavirideisavalidspecies aggregate,whichisusedforallunknownTrichodermaspe- cies;aredevelopedfromasingleisolate (QM6a),namedinrecognitionofthepioneeringcontribu- mmercialcellulasesare producedfromTrichodermaspp.,withafewalsoproduced byAspergillusniger(Esterbaueretal.,1991;Nievesetal., 1998).Thereaderisreferredtorecentcomprehensivere- viewsthataddressfeaturesofnoncomplexedcellulase/ hemicellulasesystemsproducedbyorganismsotherthan (BhatandBhat,1997;Brodaetal.,1996;Ito,1997; ShallomandShoham,2003;Singhetal.,2003;Subrama- niyanandPrema,2000;Tommeetal.,1995a;Warren,1996; Wilson,2004). cellulasemixtureconsistsofmany ttwocellobiohydro- lases(CBH1-2),fiveendoglucanases(EG1–5),h-glucosi- dases,andhemicellulaseshavebeenidentifiedby2D electrophoresis(Vinzantetal.,2001).CBH1,CBH2,and cellu- istichypothesisofenzymatichydrolysisforcellulose cellulase. 808BIOTECHNOLOGYANDBIOENGINEERING,VOL.88,NO.7,DECEMBER30,2004 lasesystem,representing60F5%,20F6%,and12F3% oftotalcellulaseprotein,respectively(Goyaletal.,1991; GritzaliandBrown,1978;Knowlesetal.,1987;Kyriacou etal.,1987;NidetzkyandClaeyssens,1994).Reconstituted cellulasepreparationsbasedonpurifiedcomponentsin theseproportionsexhibitspecificactivityequivalentto unfractionatedpreparations(Bakeretal.,1998).Thestruc- tureofCBH1,CBH2,andEG1featuresacatalyticdomain andacellulose-bindingdomainconnectedbyaglycolysated peptidelinker(Gilkesetal.,1991;LeeandBrown,1997; LinderandTeeri,1997). ThecatalyticdomainstructuresofCBH1andCBH2are entirelydifferentbutbothfeaturetunnel-shapedstructures 2,twowell-ordered ˚ longtunneladjacenttoana/h-barrelloopsforma20A structure(Rouvinenetal.,1990).InCBH1,foursurface loopsformatunnelof50Aadjacenttoah-sandwich structure(Divneetal.,1993,1994).Thetunnel-shaped topologyofCBH1andCBH2allowsforastructuralinter- - alyticsitesofbothcellobiohydrolasesarewithinthetunnel neartheoutlet,sothath-glucosidicbondsarecleaved byretaining(CBH1)orinverting(CBH2)mechanisms. Structuralanalyses,asopposedtomeasurementofhy- drolysisproducts,providesdirectevidencethatcellobiose istheprimaryproductofhydrolysismediatedbyCBH1and CBH2(Divneetal.,1993,1994;Daviesetal.,1997).The CBH1andCBH2cancleaveseveralbondsfol- lowingasingleadsorptioneventbeforethedissociationof theenzymesubstratecomplex(Imaietal.,1998;Teerietal., 1998a,b;Valjamaeetal.,1998).Therefore,theactionof CBH1andCBH2resultinagradualdecreaseinthedegree ofpolymerization(DP)ofcellulose(Kleman-Leyeretal., 1992,1996;Srisodsuketal.,1998).Cellobiohydrolaseac- tivityisoftenmeasuredbyreducingsugarreleasefrom Avicel,oftencalled‘‘Avicelase’’isagood substrateformeasuringexoglucanaseactivity,althoughnot exclusively,becauseithasthehighestratioofchainends toaccessibleinternalh-glucosidicbondsamongmodelcel- lulosicsubstrates(seeTableIandAdsorption,above). EG1andCBH1havesignificanthomology(45%identity, Penttilaetal.,1986),belongtothesamefamily(Cel7),and ivesiteofEG1isa grooveratherthanatunnel(Henrikssonetal.,1996), allowingglucanchainstobecleavedrandomlytotwo shorterchainsresultinginarapiddecreaseinDP(Kleman- Leyeretal.,1992,1994;Srisodsuketal.,1998;Whitaker, 1957;Selby,1961;WoodandMcCrae,1978).Endogluca- naseactivityismostoftenmeasuredbasedontherateof changeoftheviscosityofasolublecellulosederivativesuch ascarboxymethylcellulose(CMC)(Milleretal.,1960; WoodandMcCrae,1972).ItmaybenotedthatCMCase activityhasbeenshowntocorrelatepoorlywiththeability tohydrolyzeinsolublecelluloseevenforpurifiedendo- glucanases(Himmeletal.,1993;Klyosov,1988;Klyosov, 1990).endoglucanasesobtained byShoemakerandBrown(1978),theoneexhibitingthe highestratesofAvicelhydrolysishadthelowestCMCase v(1990)clearlypointedoutthatthespe- cificendoglucanaseactivitiesfrommanymicroorganisms measuredonCMCdonotcorrelatewithactivitiesagainst insolublecellulose. Itisapparentthatthedivisionintoendo-andexogluca- nasesisinmanycasesnotabsolute(Barretal.,1996;Irwin etal.,1993;HenrissatandDavies,1997;Teeri,1997;Teeri etal.,1998a,b).Irwinetal.(1993)documentedaprocessive doglucanaseactivity CBH2(EnariandNiku- Paavolar,1987;Kyriacouetal.,1987)andCBH1(Schmid andWandrey,1990),nsCBH2 (Boissetetal.,2000).Stahlbergetal.(1993)concludedthat beensuggestedthatexoglucanasecouldexhibitsome endoglucanaseactivityduetotemporaryconformational changesofloopsonthetunnelstructurethatexposetheir activesites(Warren,1996;ZhangandWilson,1997).This hypothesisissupportedbytheobservationthatdisruption oftheloopscomprisingthetunnelofexoglucanaseresults inincreasedendoglucanaseactivityaswellashigherk cat (Kleywegtetal.,1997;Meinkeetal.,1995).Inaddition,it maybeobservedthatCBH2containsfewerloopsalongthe catalytictunnelandexhibitsgreaterendoglucanaseactivity relativetoCBH1. RemovaloftheCBMofTrichodermacellulasesresults inaseveral-foldreductionintherateofhydrolysisof insolublecellulosebuthaslittleeffectonhydrolysisof solublesubstrates(Glikesetal.,1988;Irwinetal.,1994; Reinikainenetal.,1992;Srisodsuketal.,1997;Stahlbeg etal.,1993;Tommeetal.,1988).CBMsbe- longtofamily1(CBM1),characterizedbyasmallwedge- shapedfoldfeaturingacellulosebindingsurfacewith threeexposedaromaticresidues(Hoffrenetal.,1995; Lehtioetal.,2003;Kraulisetal.,1989).Thesearomatic residuesarethoughttobecriticalforthebindingofa cingofthethree aromaticresiduescoincideswiththespacingofeverysec- ondglucoseringonaglucanchain,andithasbeenpos- tulatedthatthearomaticaminoacidsoftheCBMsformvan derWaalsinteractionsandaromaticringpolarizationin- teractionswiththepyranoseringsonthesurfaceofcel- lulose(Lehtioetal.,2003). EG1,CBH1,andCBH2on variousinsolublecellulosicsubstratesarepresentedin aexhibitsubstantialvariabilityevenfor apparentlysimilarenzymepreparationsandsubstrates. Notwithstandingthisvariation,thedatasupportthe followingobservations:1)someearlyvaluesforexogluca- naseandendoglucanaseactivitywerehigherthanvalues reportedmorerecently,possiblyduetouseoflowerpurity enzymepreparationsinearlierstudies;2)ratesmeasuredat longerreactiontimesaremuchslowerthanthoseatshorter times,whichappearsdueatleastinparttocellulose heterogeneity(Klyosov,1990;Valjamaeetal.,1998;Zhang etal.,1999);and3)therateofgenerationofsoluble ZHANGANDLYND:NONCOMPLEXEDCELLULASESYSTEMS809 reducingsugarsbyEG1relativetoCBH1isJ1for amorphouscellulose,V1forAvicel,andV1forBMCCand ativelylowrateofreducingsugarrelease exhibitedbyEG1oncrystallinecelluloseisconsistentwith mostofthereducingendsgeneratedbyendoglucanase activityremaininginthesolidphase,anddoesnotnec- essarilyimplyalowerrateofh-glucosidicbondcleavage. ThespecificactivityofCBH2hasbeenfoundtobenearly twicethatofCBH1inmost(Henrissatetal.,1985;Medve etal.,1994;Nidetzkyetal.,1994c;Tommeetal.,1988)but notall(Bakeretal.,1998)studies. EG1,CBH1,CBH2,andh-glucosidaseonsolubleglucans. Whilevariabilityisagainevident,thefollowingtrends maybenoted:1)therateofreactioncatalyzedbyexoglu- canaseandendoglucanaseincreaseswithincreasingsolu- blesubstratechainlength,whereasdecreasingactivityof h-glucosidasewithincreasingchainlengthisobservedin thesinglestudyforwhichcomparativedataareavailable; 2)significantlyhigherratesareobservedforEG1ascom- ingdatainTablesIIIand IV,itmaybeseenthatthespecificactivitiesofexoglu- canasesandendoglucanasesactingonsolublesubstrates arehigherbyatleastanorderofmagnitudethanactivities ,therateofprimaryhydroly- sis(fromcellulosetosolubleglucans)ismuchslowerthan secondaryhydrolysis(fromsolubleglucanstocellobiose andglucose). Synergism Synergismissaidtooccurwhentheactivityexhibitedby mixturesofcomponentsisgreaterthanthesumoftheac- tivityofthesecomponentsevaluatedseparately(Walker andWilson,1991;WoodandMcCrae,1979;Woodand Garcia-Campayo,1990;Woodward,1991).Quantitative representationoftheextentofsynergismisusuallyex- pressedintermsofa‘‘degreeofsynergism’’(DS)—equal totheratiooftheactivityexhibitedbymixturesofcom- ponentsdividedbythesumoftheactivitiesofseparate fsynergismproposedinthecellulose hydrolysisliteratureinclude:1)endoglucanaseandexoglu- canase;2)exoglucanaseandexoglucanase(Fagerstamand Pettersson,1980;Tommeetal.,1988,1990;Woodand McCrae,1986;WoodandGarcia-Campayo,1990);3)en- doglucanaseandendoglucanase(Mansfieldetal.,1998; Tukaetal.,1992;Walkeretal.,1992);4)exoglucanaseor endoglucanaseandh-glucosidase,whichreducesinhibition bycellobiose(Lamedetal.,1991;Woodward,1991);5) intramolecularsynergybetweencatalyticdomainandCBM (Dinetal.,1994)ortwocatalyticdomains(Riedeland Bronnenmeier,1998;Te’oetal.,1995;Warrenetal.,1987; Zverlovetal.,1998);6)cellulose-enzyme-microbe(CEM) synergism(Lyndetal.,2002);and7)aproximitysynergism duetoformationofcellulasecomplexes(Fierobeetal., 2001,2002;Mandels,1985;Schwarz,2001).Notall synergiesarenecessarilyoperativeinanygivensituation. Forexample,synergismbetweenthecatalyticdomainand cottonfibersbut notonBMCC(Dinetal.,1994).Cell-enzyme-microbe synergismhasbeenpostulatedforsystemsinwhicha metabolicallyactivecelltogetherwithadheredcellulase bindstocellulose(Lyndetal.,2002),buthasnotbeen quantitativelyevaluated. Synergismbetweenendoglucanasesandexoglucanases isthemostwidelystudiedtypeofsynergyandisamong themostquantitativelyimportantforhydrolysisofcrystal- ninTableV,thehighestreported DSvaluesareforBC(5–10)andcotton(3.9–7.6).Less pronouncedbutstillsignificantsynergismisexhibited forAvicel(DS1.4–4.9),whilethesmallestsynergistic effects(DS0.7–1.8)havebeenreportedforphosphoric acid-swollenandotheracid-treatedamorphouscelluloses. DPappearstoplayanimportantandquitepossiblydom- icactivityofTrichodermacellulasecomponentsonsolublesubstrates. Specificactivity(Amolbond-breaking/mg/min)SubstrateDP Strain T. T. T. T. T. T. T. T. T. T. T. T. T. T. viride reesei reesei reesei reesei reesei reesei reesei reesei viride viride viride reesie reesie Enzyme CBH CBH CBH1 CBH1 CBH1 CBH2 CBH2 EG EG1 EGIII(EG1) BG BG BG1 BG1 BG2 Temp.(jC) 39 50 25 25 50 27 27 50 25 40 40 50 45 50 50 G2G3 0.013 0.1 0.23 0.013 0.056 0.074 11 24.4 19 G4 2.7 G5G6G7Reference Lietal.,1965 Hsuetal.,1980 vanTilbeurghetal.,1982 Claeyssensetal.,1989 Nidetzkyetal.,1994a Koivulaetal.,1998&2002 Harjunpaaetal.,1996 Niku-Paavolaetal.,1985 Claeyssensetal.,1989 ShoemakerandBrown,1978 BerghemandPettersson,1974 Gongetal.,1977 Shoemakeretal.,1983 Chenetal.,1992 0.41 3.78 2.86 0.49 1.01 0.74 0.98 12.9 11.0 17.5 0.81 66.7 33 58 31.4 43.5 9.8 810BIOTECHNOLOGYANDBIOENGINEERING,VOL.88,NO.7,DECEMBER30,2004 mreporteddegreeofexo/endosynergismforvariousmodelsubstrates.* Maximumdegreeofsynergism Strain rarium cellum Humicolainsolens i ulentum ii Enzymecombination Exo/Endo Exo/Endo (CBH1+CBH2)/EG1 CBH/EG Exo/Endo CBH/EG CBH1/EG1 (CBH1+CBH2)/EG1 CBH1,CBH2/EG1 CBH1/EG1 CBH1/EG1 CBH1/EG2 CBH1/EG2 CBH1/EG1 CBH1/EG2 Exo/Endo Exo/Endo <2 0.7(a) 2to5 1.4–2.1(Av) 2.5(Av) 4.9(Av) 2.9(FP) 6.8(BC) 1.8(AC) 1(AC) 3.9(ct) 7.6(ct) 1.3–1.4(Av) 1.5–2 2 (Av) f 2(Av) f 1.5–2(b) 4.1(c) 2.1(Av) 2.2(Av),2.5(d) 1.2(e) 1.8(AC)1.7–3.5(Av) 2.1(Av) >5Reference Riedeletal.,1997 Tukaetal.,1992 Boissetetal.,2001 Sadana,1985 Streameretal.,1975 WoodandMcCrae,1978 Medveetal.,1998 Woodwardetal.,1988a Bakeretal.,1998 Srisodsuketal.,1998 Valjamaeetal.,1999 Hoshinoetal.,1997 Valjamaeetal.,1999 Henrissatetal.,1985 Samejimaetal.,1998 Beldmanetal.,1988 Kimetal.,1992 1.7(c) 1.5(AC) 7.8(BC) 3.2(ct) 3(FP) 5(f) f 6(BC) 5(BC) 10(BC) *Av,Avicel;FP,filterpaper;ct,cotton;BC,bacterialcellulose;AC,amorphouscellulose;a,acid-treatedAvicel;b,acid-treatedcotton;c,acid-treated BC;d,homogenizedAvicel;e,acid-treatedBC;f,SO 2 -treatedBC. inantroleindeterminingwhethertheDSislargeorsmall. Insupportofthisinterpretation,wenotethattheabove- listedorderingofcellulosicsubstrateswithrespecttoDS isthesameastheorderingwithrespecttodegreeof polymerization(seeCellulose,above)andisalsoconsist- entwithmodelingresults(OkazakiandMoo-Young,1978). Higherendo-exosynergyhasbeenreportedforsubstrates thathavebeentreatedtoreduceCrI,forexample,homo- (Henrissatetal.,1985)and loc(Fanetal.,1981). However,Hoshinoetal.(1997)observedhigherDSas dpreviouslyinourdiscussionof CrI,itisdifficulttoattributeobservedchangestoCrIbased onworkinvolvingtreatmentsthatalsochangeaccessible surfacearea. Inadditiontosubstrateproperties,experimentalcon- beenreportedthatendo-exosynergyincreaseswithan increaseinenzymeloadingbelowsaturationbutdecreases withoversaturatedenzymeloading(Tukaetal.,1992; Watsonetal.,2002;Woodwardetal.,1988a,b;Woodward, 1991).Inaddition,suchsynergyisreportedtobegreater underconditionschosentominimizeinhibitionbysoluble hydrolysisproductsinsome(Fierobeetal.,2001,2002; Srisodsuketal.,1998)butnotall(Erikssonetal.,2002; Medveetal.,1998)studies. ComparisonofCelluloseandStarchHydrolysisRates Forthepurposeofunderstandingfactorslimitinghydrolysis ofcellulosebycellulases,itisinformativetoconsider dbyseveralauthors (Mandels,1985;Klyosov,1988),ratesofstarchhydroly- siscanbeabout100-foldfasterthanhydrolysisratesfor celluloseunderconditionsanticipatedforindustrialpro- cessesand/orusingcrystallinemodelsubstrates. Inadditiontoanydifferenceintheintrinsicreactivityof h-linkedglucansascomparedtoa-linkedglucans,three propertiesofcelluloseandstarchinfluencetheirhydrolysis rates:1)thefractionofbondsaccessibleforinsoluble substrates,2)theavailabilityofchainendsforinsoluble substrates,and3)thesolubilitiesofhydrolysisproducts. Thefractionofaccessibleglucose-glucosebonds,F a ,ranges fromlessthan0.002to0.12forcellulose(basedonEq.[11] witha=40).Thisis8–500-foldlowerthanforsoluble starch(F a =1),solublemalto-oligosaccharides,orsoluble cellulosederivativeslikeCMC(F a =1),andis5–200-fold lowerthaninsolublestarch(F a = f 0.2;Fujiietal.,1981). Thelowfractionofaccessiblebondsisthoughttolimitrates ,per unitmass)islowerforcellulosethanforstarchbecauseof thehighDPofcelluloseaswellastheincidenceof lulose,theratioofglucosylunits perchainendisequaltotheDPandrangesfrom300–2,000 (seeDegreeofPolymerization,above).Forstarch,which exhibitsbranchesevery17to26glucoseunits(Bertoldoand Antranikian,2002;Bueleonetal.,1998),eachbranchgives risetoanewchainendandtheratioofglucosylunitsto chainendsisthus f osehydrolysisratesare thoughttolimitedbytheavailabilityofchainendsfor cellobiohydrolase(Schulein,2000;Valjamaeetal.,2001; ZhangandWilson,1997),andchain-endlimitationhasalso beenproposedfortheactionofglucoamylaseonmalto- saccharides(MazurandNakatani,1993).Whereascello- dextrinsareessentiallyinsolubleatDP>6–10(Miller, 1963;Pereiraetal.,1988;ZhangandLynd,2003),malto- oligosaccharidesaresolubleatDPupto60(Johnetal., ZHANGANDLYND:NONCOMPLEXEDCELLULASESYSTEMS811 1982).Thisdifferencecanbeattributedtotheplanarlin- earstructureofcellodextrinsascomparedtothehelical ultofthesedifferences inthesolubilityofhydrolysisproduct,manyfewerbond cleavagesneedoccurbeforesolublehydrolysisproducts aregeneratedfromstarchascomparedtocellulose,anda correspondinglylargerfractionofbondscanbecleavedby enzymesactingintheliquidratherthansolidphasefor ary,mostcrys- tallinecellulosicsubstratesexhibitaz10-foldsmaller fractionofaccessiblebonds,az10-foldsmallerfrequency ofchainends,andamuchsmallerfractionofbondscleaved inthesolublephaseduringenzymatichydrolysisascom- paredtostarch. Incontrasttothemarkedlydifferentpropertiesof celluloseandstarchassubstratesforenzymatichydrolysis, availabledatasuggeststhatthespecificrateofsolubiliza- tionexhibitedbyexo-actingsaccharolyticenzymesappears ,thespecific activityofCBH2oncellohexaoseat27jC(k cat =14s À1 ; Harjunpaaetal.,1996;Koivulaetal.,1998,2002)isquite comparabletothatforAspergillusawamoriglucoamylase onmaltohexaose(G 6 )at45jC(49s À1 ;Fierobeetal.,1998), particularlywhenthedifferentmeasurementtemperatures 3.5-foldhighervalueofk cat observed forglucoamylaseat45jCrelativetoCBHat27jCisvery closetowhatwouldbeexpectedbasedonthewidely observedtrendofdoubledactivityforevery10jCincrease intemperature(GodfreyandWest,1996). Inlightoftheseconsiderations,itappearstousthatthe largedifferenceintherelativehydrolysisratesofcellulose andstarchisdueprimarilytodifferencesinsubstratechar- acteristicsratherthantoh-linkedglucosidicbondsbeing intrinsicallymoredifficulttohydrolyzethana-linked tentwiththishypothesis,were- centlyfoundthattheinitialhydrolysisrateofPASCismore than100-foldhigherthanthatofAvicel. QUANTITATIVEMODELS Aclassificationschemeforquantitativemodelsofenzy- theterm‘‘nonmechanisticmodels’’formodelsbasedondata correlationwithoutanexplicitcalculationofadsorbed uchmodelsmaybeuseful forcorrelatingdata,theyareunlikelytobereliableunder conditionsdifferentfromthoseforwhichthecorrelationwas developed,andtheyhavelimitedutilityfortestingand featuringadefensible adsorptionmodelbutwhicharebasedonconcentrationas theonlyvariabledescribingthestateofthesubstrateand/or arebasedonasinglecellulosehydrolyzingactivityare termed‘‘semimechanistic.’’Inparticular,modelsfeaturing concentrationastheonlysubstratestatevariablearereferred toas‘‘semimechanisticwithrespecttosubstrate,’’whereas modelswithasinglecellulosehydrolyzingactivityare referredtoas‘‘semimechanisticwithrespecttoenzyme.’’ Mostofthehydrolysismodelsproposedtodateforde- signofindustrialsystemsfallintothecategoryofsemi- chanisticmodelscanbeuseful inthecontextofexercisesmotivatedbyincludingthe minimalinformationnecessaryfordescriptivepurposes. However,semimechanisticmodelswithrespecttosubstrate cannotdescribeorlendinsightintobehaviorsdetermined rly, semimechanisticmodelswithrespecttoenzymecannotde- scribeorlendinsightintobehaviorsdeterminedbymultiple featuringanadsorption ficationschemeformodelsofenzymaticcellulosehydrolysis. Modelcategory Nonmechanistic Definingfeature&basis Notbasedonadefensible adsorptionmodel Utility . Datacorrelation Limitations . Reliabilityunderconditions differentfromthoseusedto developthecorrelation . Doesnotenhanceunderstanding . Datacorrelation . Reactordesign . Identificationofessentialfeatures . UnderstandingatthelevelofSemimechanistic spect tosubstrate spect toenzyme Functionallybased Basedonadefensibleadsorptionmodel Concentrationtheonly substratestatevarible Onesolubilizingactivity substratefeaturesandmultiple enzymeactivities Includesanadsorptionmodel, substratestatevariablesin additiontoconcentration, multiplesolubilizingactivities . Testinganddeveloping understandingatthelevel ofsubstratefeaturesand multipleenzymeactivities . Identifyingrate-limitingfactors . Reactordesign(potentially) . Moleculardesign . Testinganddevelopingunderstanding . Moleculardesign . Stateofmodeldevelopment anddataavailabilitycurrently limitapplicationtodesign StructurallybasedBasedonstructuralinformation pertainingtocellulasecomponents . Challengingtodevelop ofstructure/functionrelationships meaningfulkineticmodels basedonstructuralinformation 812BIOTECHNOLOGYANDBIOENGINEERING,VOL.88,NO.7,DECEMBER30,2004 model,substratestatevariablesinadditiontoconcentration, andmultipleenzymeactivitiesaredenoted‘‘functionally basedmodels.’’Functionallybasedmodelsareparticularly usefulfordevelopingandtestingunderstandingatthelevel ofsubstratefeaturesandmultipleenzymeactivities,in- cludingidentificationofrate-limitingfactorsandstrategies unctionallybasedmodels couldconceivablybeusedforbioreactordesign,application erlimitationof functionallybasedmodelsisthattheyprovidelittlebyway ofguidancerelativetodesignofcellulasesatthemolecular y,modelsbasedonstructuralfeaturesofcellu- lasecomponentsandtheirinteractionwiththeirsubstrates aretermed‘‘structurallybasedmodels.’’Toamuchgreater extentthanmodelsinothercategories,structurallybased modelsareusefulformoleculardesignaswellastesting anddevelopingunderstandingoftherelationshipbetween tionofmeaningful kineticmodelsbasedonstructuralmodelscannotbedone atthistime,andawaitsmajoradvancesinthegeneralfieldof thatthe vastmajorityofavailablekineticmodelsdonottakeinto considerationchangesinhydrolysisrateoverthecourseof hydrolysis,andthosethatdorepresentsuchchangesusing empiricallyfittedparametersratherthanmechanistically basedparameters. andlignincontentenhancehydrolysis,withspecificsurface areathemostinfluentialofthestructuralfeatures,followed ndHoltzapple(2000)reporta modeltocorrelatemaximumconversioninrelationtore- siduallignin,crystallinityindex, authorsfoundthatlignincontentandCrIhavethegreatest impactonfinalconversion,whereasacetylcontenthada setal.(1992)alsoattemptedtore- latemaximumconversionwithCrIanddegreeofdiligni- fication,andobtainedasimilarconclusionaboutCrIand lignineffects. Sattleretal.(1989)developedthefollowingequationto describefinalfractionalconversionafterenzymatichydrol- ysisofpretreatedpoplarinrelationtocellulaseloading: YY max ½E
版权声明:本文标题:纤维素酶经典综述_免费下载 内容由网友自发贡献,该文观点仅代表作者本人,
转载请联系作者并注明出处:http://www.roclinux.cn/p/1735536506a1673982.html,
本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
更多相关文章
western blot analysis results
年月日发(作者:函数).,,.,,,..(.-),,,.().,-,-..(.-),..,-(-).,.,..:-..,--.,()-.,,.,-.,,()().,.,.,.-.,..(.-).,,,..,.,,,.....,.,.,.,-
DEPENDABLEMSIANDAPP-VAPPLICATION…
年月日发(作者:数据库市场份额)---..--.,.()().()()(),....…...«»(:..).(:..)..()..............(.)....()(,)().(),:()-........,"".:"-..":-%
化学发光免疫分析方法.
年月日发(作者:用户服务管理系统)
硅烷衍生化
年月日发(作者:版本)():–.-----–&&&::::#-–(-)--()---()().,,,,,,-,,(),()(-),(),()(-),,,,-,--,,.,-,,.:--..–...(),-()--------()(:.---
PV认证讲义(英文版)
年月日发(作者:返回).(),,:,.:---.:--.––,()-::*)‚-’().-...::*)()–()–-:-:;‘’.-,-(,,):.:(,,):-:()::():::::::.––:,.,-()..,,(),,-(.)..
CPSIA electronics豁免项目_图文
年月日发(作者:音标).()().(.)()()::;;,,,,,();.,,,,;..,,().[-];;:.::()(),-,..::[].:,..,...,,,,,;-@;()-.:(),,,,,,,,()(),()
MAK034 Coenzyme A Assay Kit 产品说明书
年月日发(作者:大夏文圣阅读)–(),,.,,..,-,.,,,..,()(),..–.-..,.-–...-()&.,,....,.–.–...–,.,-..–.,–..-.,–..–,,.().,,,,,-,(),,,,,.....,,
诺基亚HVAC控制模块TR40和TR42产品介绍说明书
年月日发(作者:在数据库里是什么意思)-,-,,..,,,..:.——-—--:•,.•()().•.:•••"-"•:--(-,--,--)•,:••••••(-)•,••,.--:.:•:•:()•:()()•:-(-.)•:%%-:-
Spyder安装调试说明
年月日发(作者:位宽的异步)–.:@(.)@-..–..............................................................................................
最难的函数知识点总结
年月日发(作者:免费自学入门)最难的函数知识点总结.函数的定义和调用在编程中,函数是一种用来完成特定任务的代码块。函数通常包括函数名、参数列表和函数体。函数的定义告诉编译器如何执行该函数,而函数的调用告诉编译器何时执行该函数。在定义函数时,
学习sln、syd、bbd函数心得体会
年月日发(作者:数组过滤)学习、、函数心得体会一、关于函数学到的知识:.函数的定义:函数由函数首部和函数操作描述组成。函数首部是函数接口,函数操作描述有函数体的语句序列实现。(个人认为,在主函数外定义一个新的函数来解决主函数中的复杂问题).
MS DOS 命令大全
年月日发(作者:程序设计基础吴文虎)命令大全一、基础命令无参数:查看当前所在目录的文件和文件夹。:查看当前目录已经其所有子目录的文件和文件夹。:查看包括隐含文件的所有文件。:只显示出隐含文件。:以紧凑方式(一行显示个文件)显示文件和文件夹。
C语言 1套 选择题
年月日发(作者:实用教程)
计算机二级选择题 程序设计与软件工程
年月日发(作者:找不着还让卸载)
广东省2020-2021学年学业水平测试信息技术试题(解析版)
年月日发(作者:什么意思)
编译原理课程设计报告——词法分析器
年月日发(作者:商家管理后台)
C语言程序设计基础试题一及答案
年月日发(作者:官网)、#(){,,;()("%",);("%",);}、#(){;(){:("");;::::("");;::("");:
《C语言程序设计》课后习题参考答案
年月日发(作者:旅游网站建设策划书)
变频器被加密了,无法修改参数怎么办?(建议收藏备用,各个品牌)
变频器被加密了,无法修改参数怎么办? 各个品牌略有不同,以下仅供学习交流使用: 西门子 6SE70书本型变频器:设定密码打不开时,将P358和P359中数据改为相同即可。 ABB ACS600变频器:在16.03参数中输入密码“23032”
OpenAI大事记;GPT到ChatGPT参数量进化
目录 OpenAI大事记 GPT到ChatGPT参数量进化 OpenAI大事记 GPT到ChatGPT参数量进化 ChatGPT是从初代 GPT逐渐演变而来的。在进化的过程中,GPT系列模型的参数数量呈指数级增长,从初代GPT的1.17
发表评论