admin 管理员组

文章数量: 1086019


2024年12月27日发(作者:前端开发一年可以挣多少钱)

第52卷 第9期

2023年9月

表面技术

SURFACE TECHNOLOGY

·1·

研究综述

SOFCs金属连接体表面改性Mn-Co

尖晶石涂层研究现状

张勇,李强,伍彩虹,符明君,马江,孙也泽谋

(长安大学 材料科学与工程学院,西安 710064)

摘要:Fe-Cr铁素体不锈钢是中低温固体氧化物燃料电池(SOFCs)的理想连接体材料,但其在高温有氧环

境中表面易被氧化,且会引起阴极“Cr毒化”现象,致使电池工作效率降低。Mn-Co尖晶石因其较高的高

温导电性和抗氧化性,被广泛应用于连接体保护涂层以提高连接体的抗氧化性,并减少Cr的扩散。但Mn-Co

尖晶石涂层在长期服役过程中仍存在Cr元素扩散导致Cr

2

O

3

过渡氧化层不断增厚、涂层导电性能下降的现

象,研究发现通过对Mn-Co尖晶石涂层进行掺杂改性可有效改善上述问题。本文结合近年来Mn-Co尖晶石

涂层研究进展,简述了典型的Mn-Co尖晶石晶体结构及其导电机制,总结了改性元素在Mn-Co尖晶石中可

能的掺杂位点及对尖晶石晶体结构的影响,重点阐述了稀土元素Y、La、Ce,以及过渡族元素Cu、Fe改性

对Mn-Co尖晶石涂层抗氧化性、导电性、黏附性,以及热膨胀系数相容性的影响,详述了改性元素作用机

理,总结对比了不同元素对Mn-Co尖晶石涂层改性的侧重点。最后,对当前研究中Mn-Co尖晶石涂层存在

的问题及今后改性Mn-Co尖晶石涂层的研究方向进行了展望。

关键词:固体氧化物燃料电池;Fe-Cr铁素体不锈钢;Mn-Co尖晶石涂层;改性机理;导电性;抗氧化性

中图分类号:TG147 文献标识码:A 文章编号:1001-3660(2023)09-0001-09

DOI:10.16490/.1001-3660.2023.09.001

Research Progress of Modified Mn-Co Spinel Coating

of SOFCs Metal Interconnect

ZHANG Yong, LI Qiang, WU Cai-hong, FU Ming-jun, MA Jiang, SUN Ye-ze-mou

(School of Material Science and Engineering, Chang'an University, Xi'an 710064, China)

ABSTRACT: Fe-Cr ferrite stainless steel is an ideal material for the interconnects of low and medium temperature solid

oxide fuel cells (SOFCs), but its surface is easily oxidized in the high temperature aerobic environment and can cause "Cr

poisoning" of the cathode, resulting in the reduction of cell efficiency. Mn-Co spinel is widely used as protective coatings

for the interconnects to improve the oxidation resistance of the interconnects and reduce the diffusion of Cr. However, in

the long-term service process of the Mn-Co spinel coating, there is still a phenomenon that the diffusion of Cr element

leads to the continuous thickening of the Cr

2

O

3

transition oxide layer and the decrease of the electrical conductivity of the

收稿日期:2022-05-31;修订日期:2022-09-08

Received:2022-05-31;Revised:2022-09-08

基金项目:陕西省科技计划(2020GY-278;2020ZDLGY12-07);国家自然科学基金(51301023);国家级大学生创新创业训练计划

(S2)

Fund:Science and Technology Program of Shaanxi Province (2020GY-278;2020ZDLGY12-07); The Natural Science Foundation of China

(51301023); The National College Student Innovation and Entrepreneurship Training Program ( S2).

引文格式:张勇, 李强, 伍彩虹, 等. SOFCs金属连接体表面改性Mn-Co尖晶石涂层研究现状[J]. 表面技术, 2023, 52(9): 1-9.

ZHANG Yong, LI Qiang, WU Cai-hong, et al. Research Progress of Modified Mn-Co Spinel Coating of SOFCs Metal Interconnect[J]. Surface

Technology, 2023, 52(9): 1-9.

Copyright©博看网. All Rights Reserved.

·2·

表 面 技 术 2023年9月

coating. It is found that the above problems can be effectively improved by doping modification of Mn-Co spinel coatings.

In this study, based on the research progress of Mn-Co spinel coating in recent years, the typical Mn-Co spinel crystal

structure and its conduction mechanism were briefly described, and the possible doping sites of modified elements in

Mn-Co spinel and their effects on the crystal structure of spinel were summarized. The effects of the modification of rare

earth elements Y, La, Ce and transition group elements Cu and Fe on the oxidation resistance, electrical conductivity,

adhesion and thermal expansion coefficient compatibility of Mn-Co spinel coatings were emphatically expounded, and the

mechanism of modification elements was summarized. The focus of different elements on the modification of Mn-Co

spinel coatings was summarized and compared. Finally, the problems existing in the Mn-Co spinel coating in the current

research and the research direction of the modified Mn-Co spinel coating in the future were prospected.

The doping of rare earth elements in the Mn-Co spinel coating can improve the denseness of the coating and reduce

the thickness of the Cr

2

O

3

transition oxide layer, thereby improving the electrical conductivity and oxidation resistance of

the interconnects. In addition, the doping of rare earth elements in the coating can inhibit the formation of defects at the

oxide/substrate interface and improve the bond strength between the coating and the substrate. Therefore, rare earth

elements have a dramatic improvement on the oxidation resistance, electrical conductivity and adhesion of coating. Fe

doping into Mn-Co spinel can make its coefficient of thermal expansion more compatible with the ferrite stainless steel

substrate, but reduce the conductivity of the coating. Doping Cu in the coating can significantly enhance its electrical

conductivity, and the Cu elements can stabilize the spinel crystal structure and prevent the structural transformation from

causing large thermal stress caused by the structural transformation which leads to the cracking of the coating.

In the current study, the results of the mechanism of Y, La and Ce in Mn-Co spinel coatings are roughly the same, but

the mechanism of rare earth elements in Mn-Co spinel coatings lacks a clear understanding compared to Cu and Fe doped

Mn-Co spinel coatings. Therefore, the construction of the theoretical model of rare earth doping is still the focus of

research to be solved in the coming period of time. The mechanism of action of Cu and Fe doping in Mn-Co spinel

coatings and the effect of coating properties become clearer, but Cu and Fe doping can only solve the electrical

conductivity and coefficient of thermal expansion of the coatings, respectively. Therefore, the development of new

modification means or new coating preparation processes to simultaneously improve the electrical conductivity and

coefficient of thermal expansion matching of Mn-Co spinel coatings is also one of the difficulties to be overcome in the

research.

KEY WORDS: solid oxide fuel cells; Fe-Cr ferrite stainless steel; Mn-Co spinel coatings; modification mechanism;

conductivity; oxidation resistance

固体氧化物燃料电池(Solid Oxide Fuel Cells,

SOFCs)作为1种新型能量转换装置,具有能量转换

效率高、污染小,以及燃料适应性强等优点,从而引

起了广泛关注

[1-2]

。但SOFCs单电池输出功率较低,

需采用连接体将若干单电池串联或并联组成电堆以

满足实际应用需求。与其他金属材料连接体相比,

Fe-Cr铁素体不锈钢连接体具有导电导热性好、加工

简便,以及制造成本低等优点,是目前应用最广泛的

连接体材料之一。当Fe-Cr铁素体不锈钢连接体长期

运行于高温电堆环境下时,连接体中的Cr元素会向

外扩散与O结合在连接体表面生成含Cr氧化层并不

断生长引起电池组电阻增加,且Cr元素的挥发会使

阴极产生“Cr毒化”现象,严重影响连接体的导电

性和稳定性

[3-5]

。目前,解决上述问题的主要方法是

在金属连接体表面制备高温抗氧化涂层进行保护。迄

今为止,已经开发出众多可用于连接体涂层的材料,

如反应性元素及其氧化物涂层、稀土钙钛矿涂层、

MAlCrYO涂层,以及尖晶石氧化物涂层等

[6-7]

。与其

他类型涂层相比,尖晶石氧化物涂层因其较高的电导

率(如表1所示)和出色的抑制Cr扩散能力而备受

关注。近年来,国内外研究人员对尖晶石涂层的研究

主要集中在Mn-Co

[8-10]

、Cu-Mn

[11-13]

、Ni-Fe

[14-15]

Ni-Mn

[16-17]

,以及Cu-Fe

[18-21]

等体系上,其中Mn-Co

尖晶石更因其较高电导率及其与金属连接体之间良

表1 800 ℃下部分常见的尖晶石电导率

[7]

Tab.1 Electrical conductivity of some common

spinels at 800 ℃

[7]

Spinel oxide coatings

Cu

1.3

Mn

1.7

O

4

Electrical onductivity/(S·cm

–1

)

225(750 ℃)

MnCo

2

O

4

60

NiFe

2

O

4

9.1

NiMn

2

O

4

1.4

CuFe

2

O

4

0.26

Copyright©博看网. All Rights Reserved.

第52卷 第9期

张勇,等:SOFCs金属连接体表面改性Mn-Co尖晶石涂层研究现状 ·3·

好的热膨胀相容性而被广泛研究应用,但在长期服役

过程中仍面临Cr元素扩散导致的Cr

2

O

3

过渡氧化层

不断增厚、导电性能下降等诸多问题,无法满足长期

工作需求

[22]

。为了解决上述问题,研究人员通过对

Mn-Co尖晶石涂层进行元素掺杂以期进一步提高涂

层的抗氧化性和导电性等性能。本文结合近年来

Mn-Co尖晶石涂层的研究进展,重点阐述了不同元素

改性对Mn-Co尖晶石涂层的影响及作用机理,展望

了今后改性Mn-Co尖晶石涂层的研究方向。

量其自身的氧化物能够提高连接体材料的高温抗氧化

性,从而大幅改善氧化层与连接体之间的结合强度

[30-31]

基于稀土对连接体的显著改性效果,研究人员通过在

Mn-Co尖晶石涂层中掺杂稀土以提高涂层的抗氧化

性能、导电性能,以及结合性能。

2.1 Y掺杂对Mn-Co尖晶石涂层的影响

GAVRILOV等

[32]

通过磁控溅射法分别在Crofer

22APU和AISI430基体表面制备了Y掺杂的Mn-Co

尖晶石涂层,研究了Y掺杂对涂层抗氧化性能和导

电性能的影响。氧化测试表明,在Mn-Co尖晶石涂

层中添加Y能够显著降低试样的高温氧化速率,且

随着Y含量的增加涂层抗氧化性随之提高,AISI430

和Crofer 22APU试样的氧化速率分别降低了96%和

88%左右(如表2所示)。Y掺杂AISI430涂层试样

的ASR(Area Square Resistance, ASR)比未掺杂涂层

试样的ASR低30%,而涂层的导电性能显著提高。

THAHEEM等

[33]

采用丝网印刷法在SUS441不锈钢基

体表面制备了Cu和Y共掺杂的Mn

1.35

Co

1.35

Cu

0.2

Y

0.1

O

4

(MCCuY)涂层,研究发现MCCuY涂层试样ASR

涂层试样ASR的1/8左右,

仅为Mn

1.5

Co

1.5

O

4

MCO)

并且在650 ℃下氧化1 000 h以上试样ASR未发生明

显升高,表现出优异的稳定性。此外,长期氧化测试表

明,MCCuY涂层试样的氧化层生长速率仅为MCO涂

层试样的1/10,抗氧化性得到明显增强。XIN等

[34-35]

采用尖晶石粉末还原技术结合浆料涂敷工艺在

Crofer 22 APU基体表面制备了Mn

0.9

Y

0.1

Co

2

O

4

涂层,

研究表明,在经历室温至800℃的7~10次热循环且

长达538 h以上的高温氧化测试后,涂层试样ASR

仍<4 mΩ·cm

2

,这明显低于无涂层试样的ASR,表明

Mn

0.9

Y

0.1

Co

2

O

4

涂层具有优异的导电性能和长期稳定性。

表2 Crofer 22 APU和AISI 430表面不同Y掺杂量的

[32]

Mn-Co尖晶石涂层试样氧化速率常数

k

g

Tab.2 Oxidation rate constant k

g

of Mn-Co spinel coating

with different Y contents on Crofer 22 APU and AISI430

[32]

Alloys Coatings k

g

/(g

2

·cm

–4

·s

–1

)K

g0

/k

g

–14

Uncoated 5.6 × 10 1

MCO 1.3 × 10

–14

4.3

Crofer 22 APU

MYCO001 1.0 × 10

–14

5.1

MYCO01 8.3 × 10

–15

6.7

MYCO 6.5 × 10

–15

8.6

Uncoated 6.4 × 10

–14

1

AISI430

MCO 9.3 × 10

–15

6.9

MYCO 2.3 × 10

–15

27.8

MCO、MYCO、MYCO01以及MYCO001原子百分比分别为

Mn∶Co=1∶2、Mn∶Co∶Y=1∶2∶0.1、Mn∶Co∶Y=1∶2∶0.01、

Mn∶Co∶Y=1∶2∶0.001

1 Mn-Co尖晶石晶体结构特征

目前研究最为广泛的Mn-Co尖晶石通式为

。晶体结构示意图,见图1。尖

Mn

3–x

Co

x

O

4

(1< x <3)

八面体位点则同时存

晶石四面体位点均由Co

2+

占据,

Co

3+

、Mn

3+

,以及Mn

4+[23]

。由于Mn

3-x

Co

x

O

4

在于Co

2+

(1< x <3)尖晶石的八面体位点上存在双混合价离

子,同时其导电机制是通过Mn

3+

/Mn

4+

和Co

2+

/Co

3+

电子对之间的电子跳跃进行

[24-25]

,因此研究人员考虑

通过对Mn-Co尖晶石八面体位点掺杂多价态元素Cu

来增加导电电子对浓度以进一步提高其电导率。同时

研究表明,Mn-Co尖晶石中八面体位点元素之间价态

差异较大,尖晶石具有较高的热膨胀系数(Coefficient

[26]

of Thermal Expansion, CTE)

,因此还可通过对八

以此减小

面体位点掺杂较高价态Fe

3+

从而取代Co

2+

八面体位点元素间的价态差,从而降低尖晶石的

CTE。除此之外,在掺杂稀土元素后,稀土元素通过

晶界偏聚

[27-28]

或固溶效应

[29]

会使Cr

2

O

3

过渡氧化层

生长速率降低,涂层抗氧化性能及导电性能也相应得

到改善。

图1 Mn

3–x

Co

x

O

4

(1< x <3)晶体结构示意图

Fig.1 Schematic diagram of the crystal structure

of Mn

3–x

Co

x

O

4

(1< x <3)

2 稀土元素掺杂对Mn-Co尖晶石涂

层的影响

研究表明,通过在铁素体不锈钢连接体中添加少

量稀土元素(如Y、Ce、La,以及Hf等)或添加少

2.2 La掺杂对Mn-Co尖晶石涂层的影响

GUO等

[36]

在430SS基体表面制备了La掺杂的

Copyright©博看网. All Rights Reserved.

·4·

表 面 技 术 2023年9月

Mn-Co尖晶石涂层,其表层由Co

3

O

4

组成,次表层为

富Mn氧化物,经750 ℃氧化100 h后发现,涂层结

构致密,与基体结合良好。在氧化层/基体界面检测

到Cr富集,但涂层中的Cr含量较低,说明La掺杂

的Mn-Co尖晶石涂层可作为Cr向阴极扩散的屏障。

TSENG等

[37]

研究了SUS441基体表面MnCo

2

O

4

、La

掺杂的MnCo

2

O

4

尖晶石涂层,结果表明,掺杂La可

以细化MnCo

2

O

4

晶粒。在850 ℃下氧化4 h后,

MnCo

2

O

4

涂层试样生成了厚度为0.8 μm的弯曲氧化

层和内部多孔层,而La-MnCo

2

O

4

涂层试样氧化层均

匀连续且厚度仅为0.3 μm,表明La的掺杂对Cr的扩

散以及裂纹和孔洞的形成均具有良好的抑制效果。

2.3 Ce掺杂对Mn-Co尖晶石涂层的影响

YANG等

[38]

采用料浆烧结法在T441不锈钢表面

制备了Ce掺杂的Mn

1.5

Co

1.5

O

4

涂层,在850 ℃下氧

化1 000 h后发现,Mn

1.5

Co

1.5

O

4

涂层及其下方生长的

氧化层产生弯曲现象,并且沿氧化层/基体界面发生

分离,但Ce

0.05

Mn

1.475

Co

1.475

O

4

涂层和其下方生长的

氧化层与基体结合良好,沿氧化层/基体界面无裂纹

萌生,表现出更好的稳定性。MOSAVI等

[39]

采用电沉

积法在AISI430基体上制备了Mn-Co-CeO

2

复合涂

层,循环氧化测试结果表明,Mn-Co-CeO

2

涂层具有

良好的抗开裂和抗剥落性能。此外,在800℃下恒温

氧化200 h后,测得Mn-Co-CeO

2

涂层试样和无涂层

试样的ASR分别为12.4 mΩ·cm

2

和38.7 mΩ·cm

2

,表

明掺杂CeO

2

的Mn-Co尖晶石涂层提高了AISI430基

体的高温导电性能。LEWIS

[40]

通过复合电沉积制备了

CeO

2

掺杂的(Mn,Co)

3

O

4

涂层。研究发现,涂层试

样经800 ℃氧化250 h后,CeO

2

-(Mn,Co)

3

O

4

涂层试

样增重明显<(Mn,Co)

3

O

4

涂层试样。经导电性能测

试发现,(Mn,Co)

3

O

4

涂层试样ASR约为14 mΩ·cm

2

2

-Mn,Co)

而CeO

2

3

O

4

涂层试样ASR仅为7.5 mΩ·cm

左右,表明在(Mn,Co)

3

O

4

涂层中掺杂CeO

2

可以有

效改善其高温抗氧化性能和导电性能。

稀土改性Mn-Co尖晶石涂层作用机理以图2进

行说明。如图2a所示,在高温环境下不锈钢基体中

的Cr向外扩散至基体表面与O反应形成较厚的含Cr

氧化层,含Cr氧化层在一定程度上能避免氧气与基

体的直接接触。然而随着氧化时间的延长,基体中大

量的Cr仍会向外扩散使得导电性能较差的含Cr氧化

层继续生长,从而导致氧化层/基体界面处应力增大

并形成微裂纹,且Cr的扩散容易导致氧化层/基体界

面产生空位,空位进一步合并形成孔洞,使得氧化层

黏附性降低

[41]

,这会严重影响SOFCs的性能。在基

体表面制备Mn-Co尖晶石涂层可以在一定程度上减

缓Cr的向外扩散以及O的向内扩散,与氧化后合金

基体表面的含Cr氧化层相比,Mn-Co尖晶石涂层试

样中的Cr

2

O

3

过渡氧化层厚度及孔洞裂纹明显减少

(如图2b所示)。但在长期氧化过程中,基体与涂层

之间仍会形成较厚,且导电性能较差的Cr

2

O

3

过渡氧

化层,存在会使涂层与基体的结合力降低。

与未改性的Mn-Co尖晶石涂层相比,稀土掺杂

Mn-Co尖晶石涂层试样在长期氧化过程中生成的

Cr

2

O

3

过渡氧化层明显更薄,涂层中的缺陷进一步减

少(见图2c)。这是因为稀土元素与氧气结合生成的

稀土氧化物受到热力学能量最低原理限制而偏聚在

晶界处

[42]

,改变了Cr

2

O

3

的生长机制,即由Cr向外

扩散生长变为由O主导的向内扩散生长

[27-28]

。另一

方面,稀土原子会固溶于Mn-Co尖晶石晶体结构中

(见图2c),形成较多形核点,细化了晶粒,同时减

少了涂层中的微孔数量,使得涂层更加致密

[29]

,从而

进一步抑制了Cr的向外扩散和O的向内扩散,致使

Cr

2

O

3

过渡氧化层生长速率显著降低。而Cr

2

O

3

过渡

氧化层厚度是影响连接体ASR最重要的因素

[39,43-45]

因此涂层中掺杂稀土后在抑制Cr

2

O

3

生长的基础上改

善了涂层的高温导电性能。由图2可进一步看出,掺

杂稀土元素后,过渡氧化层与基体间的孔洞裂纹明显

减少,氧化层与基体之间的结合性能显著增强

[46-47]

这一方面是由于稀土元素会导致离子传输机制改变,

图2 稀土改性Mn-Co尖晶石涂层作用机制:(a) 金属基体,(b) Mn-Co尖晶石涂层试样,

(c) 稀土改性Mn-Co尖晶石涂层试样

Fig.2 Action mechanism of RE-modified Mn-Co spinel coating: a) metal substrate;

b) Mn-Co spinel coated substrate; c) RE-doped Mn-Co spinel coated substrate

Copyright©博看网. All Rights Reserved.

第52卷 第9期

张勇,等:SOFCs金属连接体表面改性Mn-Co尖晶石涂层研究现状 ·5·

Cr

2

O

3

层由向外生长占优变为向内生长占优,氧化层

与基体之间的孔洞被向内生长的Cr

2

O

3

所填充,孔洞

的尺寸和数量大幅减少,此外,稀土元素的存在阻碍

了涂层与基体之间元素相互扩散,进一步抑制了孔洞

[43]

的形成

。另一方面,Cr

2

O

3

过渡氧化层厚度的减少

会使氧化层与基体界面处变形程度减小,从而产生的

应力减少,抑制了裂纹的形成及扩展

[48]

。因此,上述

孔洞及裂纹的减少使得氧化层与基体之间接触面积

增大,黏附性得到增强。

究发现,随着Fe含量的增加,涂层CTE几乎呈线性

下降,电导率也呈现出下降的趋势。800 ℃环境下,

MnCo

2

O

4

电导率为89 S·cm

–1

,而MnCo

1.5

Fe

0.5

O

4

的电

导率仅为31 S/cm。

3 过渡族金属元素掺杂对Mn-Co尖

晶石涂层的影响

除掺杂稀土元素外,对过渡族金属元素掺杂的

Mn-Co尖晶石涂层的研究也日渐增多。为了改善涂层

的各项性能,适应涂层的实际需求,常掺杂Cu、Fe

等元素改善涂层性能。以下分别介绍掺杂上述元素对

Mn-Co尖晶石涂层性能的影响。

图3 750 ℃氧化过程中界面处元素扩散、

反应和氧化机制示意图

[49]

Fig.3 Schematic diagram of mechanism of element

diffusion, reactivity and oxidation at the interface

during oxidation at 750 ℃

[49]

3.1 Fe掺杂对Mn-Co尖晶石涂层的影响

ZANCHI等

[49]

通过电泳沉积法分别在Crofer 22

APU和AISI441基体表面制备了10FeMCO(90 wt%

Mn

1.5

Co

1.5

O

4

, 10 wt% Fe

2

O

3

)涂层,经750 ℃氧化

3200 h后发现,掺杂Fe的Mn-Co尖晶石涂层对基体

中Cr的扩散起到明显的阻挡作用,从而使得氧化层厚

度减小。如图3所示,基体中的Cr倾向于向外扩散至

涂层中,而Cr

3+

与Fe

3+

对尖晶石中八面体位点均具有极

强的偏好,这表明Cr

3+

和Fe

3+

在晶体结构中占据相同

位置的趋势对阻止Cr的进一步扩散具有积极作用。

BEDNARZ等

[50]

采用电泳沉积法在Crofer 22 H表面

制备了Mn

1.45

Co

1.45

Fe

0.1

O

4

和Mn

1.5

Co

1.5

O

4

两种尖晶石涂

层,并研究了高温氧化后的性能。研究发现,Mn

1.5

Co

1.5

O

4

涂层晶粒尺寸为3~20 μm,而Mn

1.45

Co

1.45

Fe

0.1

O

4

涂层晶

粒尺寸仅为1~10 μm,表明掺杂Fe可以细化Mn

1.5

Co

1.5

O

4

尖晶石晶粒。Mn

1.45

Co

1.45

Fe

0.1

O

4

涂层与基体之间的氧

化层厚度为0.3~2.2 μm,低于未改性涂层试样的氧化

层厚度(2.1~3.7 μm),表明改性涂层对Cr和O扩散

的阻挡效果更显著。WANG等

[51]

利用固态反应将

Co

3

O

4

、MnO和Fe

3

O

4

合成了(Mn,Co,Fe)

3

O

4

尖晶

石,并研究了Fe掺杂对涂层CTE以及反应层生长速

率的影响。结果表明,与(Mn,Co)

3

O

4

尖晶石CTE

相比,(Mn,Co,Fe)

3

O

4

尖晶石CTE(10×10

–6

K

–1

~12×

10

–6

K

–1

)与铁素体不锈钢基体CTE(11×10

–6

K

–1

~13×

10

–6

K

–1

)更加匹配。此外,Mn

1.5

Co

1.5

O

4

涂层试样反

应层的厚度约为(Mn,Co,Fe)

3

O

4

涂层的1.5~2.5倍,

表明改性涂层与Cr

2

O

3

层之间的反应速率显著降低,

从而减小了涂层剥落的风险。TALIC等

[52]

合成了

MnCo

2–x

Fe

x

O

4

(x=0.1, 0.3, 0.5)粉末,重点研究了Fe

含量对Mn-Co尖晶石涂层CTE和导电性能影响。研

连接体长期服役过程中产生的应力聚集会导致

涂层开裂或剥落,因此提高涂层和基体之间的CTE

相容性是避免应力产生的关键。研究表明

[52-53]

,在

Mn-Co尖晶石涂层中掺杂Fe可以降低涂层的CTE,

这是由于涂层的CTE与尖晶石晶体结构中的阳离子

分布和价态差存在关系,当尖晶石中八面体位点元素

之间价态差异较大时,尖晶石具有较高的CTE

[26]

如图4所示,Fe

3+

进入尖晶石中会优先占据八面体位

点取代Co

2+

,减少了八面体位点上Co

2+

数量,从而

减少了元素间的价态差,使涂层CTE降低。但Fe的

掺杂会使Mn-Co尖晶石的电导率降低,这是由于

Mn-Co尖晶石导电机制是通过八面体位点上Co

2+

/Co

3+

和Mn

3+

/Mn

4+

电子对之间的电子跳跃进行,当Fe

3+

生取代时也会降低Co

3+

浓度,使得电子跳跃仅限于

Mn

3+

/Mn

4+

之间,可供电子跳跃的位点减少

[54]

。此外,

Fe

3+

半径较大,掺杂时导致尖晶石晶格膨胀,增大了八面

体位点之间电子的跳跃距离,也使得电导率降低

[55]

图4 Fe掺杂的Mn-Co尖晶石晶体结构变化示意图

Fig.4 Schematic diagram of crystal structure

change of Fe doped Mn-Co spinel

3.2 Cu掺杂对Mn-Co尖晶石涂层的影响

BRYLEWSKI等

[56]

采用EDTA凝胶工艺合成了

Copyright©博看网. All Rights Reserved.

·6·

表 面 技 术 2023年9月

Cu

x

Mn

1.25–0.5x

Co

1.75–0.5x

O

4

(x = 0, 0.1, 0.3和0.5)尖晶

石,研究发现随着Cu含量的增加,尖晶石电导率呈

现出先升高后降低的趋势,这是因为掺杂适量Cu可

以在尖晶石八面体位点形成Cu

+

/Cu

2+

导电电子对,

加了电子对浓度,从而使电导率得到提高。进一步增

加Cu含量会导致烧结过程中形成电阻较大的CuO反

而使尖晶石电导率降低,且Cu

0.3

Mn

1.1

Co

1.6

O

4

电导率

最高。CHEN等

[57]

采用柠檬酸-硝酸法合成了

Mn

1.4

Co

1.4

Cu

0.2

O

4

粉体,然后制成浆料涂敷于Crofer

22 APU基体表面烧结成涂层。研究发现,在800 ℃

下氧化530 h后,ASR基本保持在4 mΩ·cm

2

,表现

(12.64×

出更好的导电性能。Mn

1.4

Co

1.4

Cu

0.2

O

4

的CTE

10

–6

K

–1

)与Crofer 22 APU基体(12.37 × 10

–6

K

–1

更为接近。XIAO等

[58]

在SUS430基体表面制备了

MnCu

x

Co

2-x

O

4

(x=0.1, 0.3, 0.5, 0.7)尖晶石涂层,并

研究了Cu含量对尖晶石电导率的影响。结果表明,

MnCu

0.5

Co

1.5

O

4

尖晶石在750 ℃表现出最高的电导率

,如图5所示,当Cu计量数进一步

(105.46 S·cm

–1

增加至0.7时,由于Cu在MnCo

2

O

4

中的有限固溶度

和两相共存导致MnCu

0.7

Co

1.3

O

4

的电导率反而低于

MnCu

0.5

Co

1.5

O

4

尖晶石的电导率。

图6 Cu改性Mn-Co尖晶石作用机制

Fig.6 Action mechanism of Cu-modified

Mn-Co spinel coating

图5 MnCu

x

Co

2–x

O

4

(x = 0.1, 0.3, 0.5, 0.7)尖晶石在500~

800 ℃空气中电导率随温度变化曲线

[58]

Fig.5 Change of electrical conductivity with temperature

for the MnCu

x

Co

2–x

O

4

(x = 0.1, 0.3, 0.5, 0.7) spinel in air

from 500 to 800 ℃

[58]

的致密性来抑制Cr和O的扩散,从而减小Cr

2

O

3

渡氧化层的厚度,提高连接体的导电性和抗氧化性。

此外,在涂层中掺杂稀土元素可以抑制氧化层/基体

界面处裂纹孔洞形成,提高了涂层与基体之间的结合

强度。因此,稀土元素对于涂层试样抗氧化性、导电

性以及涂层黏附性有大幅改善作用;Fe掺杂进Mn-Co

2+

减少了八面体位点

尖晶石中会取代八面体位点Co

元素间价态差,使得Mn-Co尖晶石涂层CTE降低。

因此,在涂层中掺杂Fe可以使其CTE与铁素体不锈

钢基体更加匹配。但Fe在八面体位点的取代使阳离

子跳跃位点减少,同时导致晶格发生膨胀增加阳离子

跳跃距离,使涂层的电导率降低;在涂层中掺杂适量

Cu可以显著增强其导电性,这是因为掺杂Cu元素增

加了尖晶石八面体位点不同价态的电子对浓度,同时

促进电子对间电子跳跃从而提高电导率。此外,Cu

元素可以稳定尖晶石晶体结构,防止结构转变引起较

大的热应力导致涂层开裂。

以上分析可以得出,稀土元素掺杂对Mn-Co尖

晶石涂层抗氧化性、导电性以及黏附性等综合性能均

具有较好的改善作用,而过渡族元素Cu的掺杂主要

侧重于改善涂层的导电性,Fe元素的掺杂主要侧重

于对涂层CTE相容性方面的改善。因此,在选择

Mn-Co尖晶石涂层改性元素时,应先明确应用场景对

涂层性能的具体需求。

4 结语

当前研究中通过元素掺杂的方式使Mn-Co尖晶

石涂层的高温抗氧化性、导电性等性能得到了大幅提

升,有效提高了连接体材料的服役性能。随着现代工

业对改性Mn-Co尖晶石涂层的性能要求不断提高,

研究中仍面临以下需要解决的问题:(1)对于稀土元

素改性Mn-Co尖晶石涂层,稀土元素在涂层中的存

在形式及作用机理仍不清晰,因此需要系统研究稀土

元素对涂层组织结构和使用性能的影响规律,明确稀

土元素的作用机理。(2)当前Mn-Co尖晶石涂层改

性研究大多以单元素掺杂为主,掺杂效果单一。对此

可以考虑对涂层进行复合改性,实现涂层综合性能的

国内外大多数研究者在Mn-Co尖晶石中掺杂Cu

的主要目的是进一步增强其导电性。如图6所示,在

Mn-Co尖晶石中掺杂Cu不仅会导致八面体位点形成

,还会促进

不同价态的阳离子(例如Cu

+

和Cu

2+

Mn

3+

/Mn

4+

和Co

2+

/Co

3+

电子对不同价态之间电子跳

跃,使尖晶石的导电性得到提高

[33, 59-60]

,但在涂层中

掺杂过量的Cu会导致生成CuO的副产物反而使涂层

导电性能下降。同时,Cu的存在可以减小尖晶石的

晶格畸变,抑制立方相向四方相转变

[33, 56]

,从而防止

涂层受到热应力的作用产生开裂和剥落等现象。

综上所述,可以发现在Mn-Co尖晶石涂层中掺

杂稀土元素可以改变Cr

2

O

3

的生长机制并且提高涂层

Copyright©博看网. All Rights Reserved.

第52卷 第9期

张勇,等:SOFCs金属连接体表面改性Mn-Co尖晶石涂层研究现状 ·7·

改善。(3)对于Mn-Co尖晶石涂层抗氧化性、导电

性等性能的研究多在实验室条件下进行,无法满足连

接体实际服役环境测试需求,且难以进行长时间的寿

命评估,应考虑采用有限元模拟的方式模拟连接体真

实工作环境和时间,以简化实验流程并准确地反映服

役性能。

[9]

[10]

参考文献:

[1] GOEBEL C, BERGER R, BERNUY-LOPEZ C, et al.

Long-term (4 year) Degradation Behavior of Coated

Stainless Steel 441 Used for Solid Oxide Fuel Cell

Interconnect Applications[J]. Journal of Power Sources,

2020, 449: 227480-227487.

TAI X Y, ZHAKEYEV A, WANG H, et al. Accelerating

Fuel Cell Development with Additive Manufacturing

Technologies: State of the Art, Opportunities and

Challenges[J]. Fuel Cells, 2019, 19(6): 636-650.

HASSAN M A, MAMAT O B, Mehdi M. Influence of

Alloy Addition and Spinel Coatings on Cr-based Metallic

Interconnects of Solid Oxide Fuel Cells[J]. International

Journal of Hydrogen Energy, 2020, 45(46): 25191-25209.

FALK-WINDISCH H, CLAQUESIN J, SATTARI M, et al.

Co-and Ce/Co-Coated Ferritic Stainless Steel as Inter-

connect Material for Intermediate Temperature Solid

Oxide Fuel Cells[J]. Journal of Power Sources, 2017, 343:

1-10.

李俊. 中温固体氧化物燃料电池金属连接体的氧化行

为和Cr挥发特性及其表面改性[D]. 武汉: 华中科技大

学, 2018.

LI Jun. Oxidation Behavior, Cr Evaporation Feature and

Surface Modification of Metallic Interconnect for

Intermediate Temperature Solid Oxide Fuel Cells[D].

Wuhan: Huazhong University of Science and Technology,

2018.

辛显双, 朱庆山, 刘岩. 固体氧化物燃料电池(SOFC)

合金连接体耐高温氧化导电防护涂层[J]. 表面技术,

2019, 48(1): 22-29.

XIN Xian-shuang, ZHU Qing-shan, LIU Yan. Conductive

Protective Coating with Heat Oxygen-Resistance for

Solid Oxide Fuel Cell (SOFC) Alloy Interconnect[J].

Surface Technology, 2019, 48(1): 22-29.

MAH J C W, MUCHTAR A, SOMALU M R, et al.

Metallic Interconnects for Solid Oxide Fuel Cell: A

Review on Protective Coating and Deposition Techn-

iques[J]. International Journal of Hydrogen Energy, 2017,

42(14): 9219-9229.

TALIC B, VENKATACHALAM V, HENDRIKSEN P V,

et al. Comparison of MnCo

2

O

4

Coated Crofer 22 H, 441,

430 as Interconnects for Intermediate-temperature Solid

Oxide Fuel Cell Stacks[J]. Journal of Alloys and Comp-

ounds, 2020, 821: 153229-153261.

[11]

[2]

[12]

[3]

[13]

[4]

[14]

[5]

[15]

[6]

[16]

[17]

[7]

[18]

[8]

[19]

[20]

KAMECKI B, KARCZEWSKI J, MIRUSZEWSKI T, et al.

Low Temperature Deposition of Dense MnCo

2

O

4

Prote-

ctive Coatings for Steel Interconnects of Solid Oxide

Cells[J]. Journal of the European Ceramic Society, 2018,

38(13): 4576-4579.

李晔珑, 宋建丽, 朱家红, 等. 铁素体不锈钢表面

Co-Mn

3

O

4

复合镀层的制备及热转化工艺优化[J]. 电镀

与涂饰, 2019, 38 (13): 647-652.

LI Ye-long, SONG Jian-li, ZHU Jia-hong, et al. Optim-

ization of Preparation of Co-Mn

3

O

4

Composite Coating

on Ferritic Stainless Steel and Its Thermal Conversion

Process[J]. Electroplating & Finishing, 2019, 38 (13):

647-652.

RANJBAR-Nouri Z, SOLTANIEH M, RASTEGARI S.

Applying the Protective CuMn

2

O

4

Spinel Coating on

AISI-430 Ferritic Stainless Steel Used as Solid Oxide

Fuel Cell Interconnects[J]. Surface and Coatings Technol-

ogy, 2018, 334: 365-372.

WANG R, SUN Z, LU Y, et al. Chromium Poisoning of

Cathodes in Solid Oxide Fuel Cells and its Mitigation

Employing CuMn

1.8

O

4

Spinel Coatings on Intercon-

nects[J]. ECS Transactions, 2017, 78(1): 1665-1674.

WALUYO N S, PARK B K, LEE S B, et al. (Mn,Cu)

3

O

4

-

based Conductive Coatings as Effective Barriers to High-

temperature Oxidation of Metallic Interconnects for Solid

Oxide Fuel Cells[J]. Journal of Solid State Electroch-

emistry, 2014, 18(2): 445-52.

赵清清. 固体氧化物燃料电池不锈钢连接体表面沉积

Ni-Fe合金涂层的高温性能[D]. 沈阳: 东北大学, 2019.

ZHAO Qing-qing. High Temperature Behavior of Ni-Fe

Alloy Coating for Solid Oxide Fuel Cell Steel Intercon-

nects[D]. Shenyang: Northeastern University, 2019.

ZHAO Q, GENG S, CHEN G, et al. Influence of Preox-

idation on High Temperature Behavior of NiFe

2

Coated

SOFC Interconnect Steel[J]. International Journal of

Hydrogen Energy, 2019, 44(26): 13744-13756.

ZHU H, GENG S, CHEN G, et al. Ni-Mn

3

O

4

-CeO

2

Com-

posite Coating on Ferritic Stainless Steel Interconnects[J].

Corrosion Science, 2022, 194: 109932-109944.

ZHANG Y, ZHANG Y, WU C, et al. Oxidation Behavior

and Electrical Properties of Metal Interconnects with

Ce-Doped Ni-Mn Spinel Coatings[J]. Ceramics Internat-

ional, 2022, 48(7): 9550-9557.

张宇涛. 丝网印刷法制备稀土改性CuFe

2

O

4

尖晶石涂

层研究[D]. 西安:长安大学, 2021.

ZHANG Yu-tao. Preparation of Rare Earth Modified

CuFe

2

O

4

Spinel Coating by Screen Printing Method[D].

Xi'an: Chang'an University, 2021.

HOSSEINI S N, KARIMZADEH F, ENAYATI M H, et

al. Oxidation and Electrical Behavior of CuFe

2

O

4

Spinel

Coated Crofer 22 APU Stainless Steel for SOFC Interco-

nnect Application[J]. Solid State Ionics, 2016, 289: 95-

105.

GENG S, PAN Y, CHEN G, et al. CuFe

2

O

4

Protective and

Copyright©博看网. All Rights Reserved.

·8·

表 面 技 术 2023年9月

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Electrically Conductive Coating Thermally Converted

from Sputtered Cufe Alloy Layer on SUS 430 Stainless

Steel Interconnect[J]. International Journal of Hydrogen

Energy, 2019, 44(18): 9400-9407.

HASSAN M A, MAMAT O B. Mitigation of Chromium

Poisoning of Ferritic Interconnect from Annealed Spinel

of CuFe

2

O

4

[J]. Processes, 2020, 8(9): 1113-1127.

LIU W N, SUN X, STEPHENS E, et al. Life Prediction of

Coated and Uncoated Metallic Interconnect for Solid

Oxide Fuel Cell Applications[J]. Journal of Power

Sources, 2009, 189(2): 1044-1050.

BORDENEUVE H, TENAILLEAU C, GUILLEMET-

FRITSCH S, et al. Structural Variations and Cation

Distributions in Mn

3-x

Co

x

O

4

(0≤ x≤ 3) Dense Cera-

mics Using Neutron Diffraction Data[J]. Solid State

Sciences, 2010, 12(3): 379-386.

BORDENEUVE H, GUILLEMET-FRITSCH S, ROU-

SSET A, et al. Structure and Electrical Properties of

Single-phase Cobalt Manganese Oxide Spinels Mn

3–x

Co

x

O

4

Sintered Classically and by Spark Plasma Sintering (SPS)

[J]. Journal of Solid State Chemistry, 2009, 182(2):

396-401.

ROUSSET A, TENAILLEAU C, DUFOUR P, et al.

Electrical Properties of Mn

3-x

Co

x

O

4

(0≤ x ≤3) Cera-

mics: an Interesting System for Negative Temperature

Coefficient Thermistors[J]. International Journal of

Applied Ceramic Technology, 2013, 10(1): 175-85.

BAYER G. Thermal Expansion of Oxide Compounds with

Spinel Structure[J]. Thermochimica Acta, 1972, 3(6):

421-426.

ALLAM I, WHITTLE D, STRINGER J. Improvements in

Oxidation Resistance by Dispersed Oxide Addition:

Al

2

O

3

-Forming Alloys[J]. Oxidation of Metals, 1979,

13(4): 381-401.

WHITTLE D P, STRINGER J. Improvements in High

Temperature Oxidation Resistance by Additions of

Reactive Elements or Oxide Dispersions[J]. Philosophical

Transactions of the Royal Society of London A

(Mathematical and Physical Sciences), 1980, 295(1413):

309-329.

MOON D P. Role of Reactive Elements in Alloy

Protection[J]. Materials Science and Technology, 1989,

5(8): 754-764.

曹希文, 张雅希, 林梅, 文海明. 固体氧化物燃料电池

合金连接体表面改性研究进展[J]. 佛山陶瓷, 2019, 29

(10): 5-7.

CAO Xi-wen, ZHANG Ya-xi, LIN Mei, WEN Hai-ming.

Research Progress of Surface Modification of Alloy

Connector in SOFC[J]. Foshan Ceramics, 2019, 29 (10):

5-7.

HORITA T, XIONG Y, YAMAJI K, et al. Imaging of

Mass Transports Around the Oxide Scale/Fe–Cr Alloy

Interfaces[J]. Solid State Ionics, 2004, 174(4): 41-48.

GAVRILOV N V, IVANOV V V, KAMENETSKIKH A S,

et al. Investigations of Mn-Co-O and Mn-Co-Y-O

Coatings Deposited by the Magnetron Sputtering on

Ferritic Stainless Steels[J]. Surface and Coatings Techn-

ology, 2011, 206(6): 1252-1258.

[33] THAHEEM I, JOH D W, NOH T, et al. Highly

Conductive and Stable Mn

1.35

Co

1.35

Cu

0.2

Y

0.1

O

4

Spinel

Protective Coating on Commercial Ferritic Stainless

Steels for Intermediate-Temperature Solid Oxide Fuel

Cell Interconnect Applications[J]. International Journal of

Hydrogen Energy, 2019, 44(8): 4293-4303.

[34] Xin X, Wang S, Qian J, et al. Development of the Spinel

Powder Reduction Technique for Solid Oxide Fuel Cell

Interconnect Coating[J]. International Journal of Hydro-

gen Energy, 2012, 37(1): 471-476.

[35] XIN X, WANG S, ZHU Q, et al. A High Performance

Nano-structure Conductive Coating on a Crofer22APU

Alloy Fabricated by a Novel Spinel Powder Reduction

Coating Technique[J]. Electrochemistry Communications,

2010, 12(1): 40-43.

[36] GUO P, LAI Y, SHAO Y, et al. Oxidation Characteristics

and Electrical Properties of Doped Mn-Co Spinel

Reaction Layer for Solid Oxide Fuel Cell Metal Interco-

nnects[J]. Coatings, 2018, 8(1): 42-53.

[37] TSENG H P, YUNG T Y, LIU C K, et al. Oxidation

Characteristics and Electrical Properties of La- or

Ce-Doped MnCo

2

O

4

as Protective Layer on SUS441 for

Metallic Interconnects in Solid Oxide Fuel Cells[J].

International Journal of Hydrogen Energy, 2020, 45(22):

12555-12564.

[38] YANG Z, XIA G, NIE Z, et al. Ce-Modified (Mn,Co)

3

O

4

Spinel Coatings on Ferritic Stainless Steels for SOFC

Interconnect Applications[J]. Electrochemical and Solid

State Letters, 2008, 11(8): B140-B143.

[39] MOSAVI A, EBRAHIMIFAR H. Investigation of

Oxidation and Electrical Behavior of AISI430 Steel

Coated with Mn-Co-CeO

2

Composite[J]. International

Journal of Hydrogen Energy, 2020, 45(4): 3145-3162.

[40] LEWIS J M. Synthesis and Evaluation of Electroly-

tically-deposited Coatings to Protect Ferritic Stainless

Steels for Solid Oxide Fuel Cell Interconnect Applica-

tion[D]. Tennessee: Tennessee Technological University,

2011.

[41] 华斌. 固体氧化物燃料电池金属连接体材料的氧化和

导电性以及表面改性[D]. 武汉: 华中科技大学, 2010.

HUA Bin. Oxidation, Conductivity and Surface Modific-

ation of Metallic Interconnect Materials for Solid Oxide

Fuel Cells[D]. Wuhan: Huazhong University of Science

and Technology, 2010.

[42] RAMANATHAN L. Role of Rare-earth Elements on High

Temperature Oxidation Behavior of Fe-Cr, Ni-Cr and

Ni-Cr-Al Alloys[J]. Corrosion Science, 1993, 35(5-8):

871-878.

[43] YOU P F, ZHANG X, ZHANG H L, et al. Effect of CeO

2

on Oxidation and Electrical Behaviors of Ferritic

Copyright©博看网. All Rights Reserved.

第52卷 第9期

张勇,等:SOFCs金属连接体表面改性Mn-Co尖晶石涂层研究现状 ·9·

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

Stainless Steel Interconnects with Ni-Fe Coatings[J].

International Journal of Hydrogen Energy, 2018, 43(15):

7492-7500.

BI Z H, ZHU J H, DU S W, et al. Effect of Alloy

Composition on the Oxide Scale Formation and Electrical

Conductivity Behavior of Co-Plated Ferritic Alloys[J].

Surface and Coatings Technology, 2013, 228: 124-131.

HARTHOJ A, HOLT T, MOLLER P. Oxidation Behav-

iour and Electrical Properties of Cobalt/Cerium Oxide

Composite Coatings for Solid Oxide Fuel Cell Interc-

onnects[J]. Journal of Power Sources, 2015, 281:

227-237.

PIERAGGI B, RAPP R A. Chromia Scale Growth in

Alloy Oxidation and the Reactive Element Effect[J].

Journal of the Electrochemical Society, 1993, 140(10):

2844-2851.

HOU P, STRINGER J. The Effect of Reactive Element

Additions on the Selective Oxidation, Growth and

Adhesion of Chromia Scales[J]. Materials Science and

Engineering, 1995, 202(2): 1-10.

高彬. SOFC合金连接体Y掺杂CuMn

2

O

4

涂层制备工艺

研究[D]. 西安: 长安大学, 2019.

GAO Bin. The Research of Preparation Processes of

Y-doped CuMn

2

O

4

Coating for SOFC Alloy Interc-

onnect[D]. Xi'an: Chang'an University, 2019.

ZANCHI E, MOLIN S, SABATO A G, et al. Iron Doped

Manganese Cobaltite Spinel Coatings Produced by

Electrophoretic Co-Deposition on Interconnects for Solid

Oxide Cells: Microstructural and Electrical Characte-

rization[J]. Journal of Power Sources, 2020, 455: 227910-

227921.

BEDNARZ M, MOLIN S, BOBRUK M, et al. High-

temperature Oxidation of the Crofer 22 H Ferritic Steel

with Mn

1.45

Co

1.45

Fe

0.1

O

4

and Mn

1.5

Co

1.5

O

4

Spinel Coatings

under Thermal Cycling Conditions and its Properties[J].

Materials Chemistry and Physics, 2019, 225: 227-238.

WANG K, LIU Y, FERGUS J W. Interactions between

SOFC Interconnect Coating Materials and Chromia[J].

Journal of the American Ceramic Society, 2011, 94(12):

4490-4495.

TALIC B, HENDRIKSEN P V, WIIK K, et al. Thermal

Expansion and Electrical Conductivity of Fe and Cu

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

Doped MnCo

2

O

4

Spinel[J]. Solid State Ionics, 2018, 326:

90-99.

MASI A, BELLUSCI M, MCPHAIL S J, et al. The Effect

of Chemical Composition on High Temperature Behav-

iour of Fe and Cu Doped Mn-Co Spinels[J]. Ceramics

International, 2017, 43(2): 2829-2835.

ZHOU J, HU X, LI J, et al. Fe Doped Ni-Co Alloy by

Electroplating as Protective Coating for Solid Oxide Fuel

Cell Interconnect Application[J]. International Journal of

Hydrogen Energy, 2021, 46(79): 39457-39468.

LIU Y, FERGUS J W, WANG K, et al. Crystal Structure,

Chemical Stabilities and Electrical Conductivity of

Fe-Doped Manganese Cobalt Spinel Oxides for SOFC

Interconnect Coatings[J]. Journal of The Electrochemical

Society, 2013, 160(11): F1316-F1321.

BRYLEWSKI T, KRUK A, BOBRUK M, et al. Structure

and Electrical Properties of Cu-doped Mn-Co-O Spinel

Prepared via Soft Chemistry and Its Application in

Intermediate-temperature Solid Oxide Fuel Cell Interc-

onnects[J]. Journal of Power Sources, 2016, 333: 145-

155.

CHEN G, XIN X, LUO T, et al. Mn

1.4

Co

1.4

Cu

0.2

O

4

Spinel

Protective Coating on Ferritic Stainless Steels for Solid

Oxide Fuel Cell Interconnect Applications[J]. Journal of

Power Sources, 2015, 278: 230-234.

XIAO J, ZHANG W, XIONG C, et al. Oxidation Beha-

vior of Cu-doped MnCo

2

O

4

Spinel Coating on Ferritic

Stainless Steels for Solid Oxide Fuel Cell Interc-

onnects[J]. International Journal of Hydrogen Energy,

2016, 41(22): 9611-9618.

PARK B K, LEE J W, LEE S B, et al. Cu- and Ni-doped

Mn

1.5

Co

1.5

O

4

Spinel Coatings on Metallic Interconnects

for Solid Oxide Fuel Cells[J]. International Journal of

Hydrogen Energy, 2013, 38(27): 12043-12050.

MASI A, BELLUSCI M, MCPHAIL S J, et al. Cu-Mn-Co

Oxides as Protective Materials in SOFC Technology: The

Effect of Chemical Composition on Mechanochemical

Synthesis, Sintering Behaviour, Thermal Expansion and

Electrical Conductivity[J]. Journal of the European

Ceramic Society, 2017, 37(2): 661-669.

责任编辑:蓝英侨

Copyright©博看网. All Rights Reserved.


本文标签: 涂层 尖晶石 氧化 掺杂 连接体